Discover new knowledge and insights with IDNLearn.com's extensive Q&A database. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
To find the gravitational force between two astronauts, we use Newton's Law of Universal Gravitation, which can be stated mathematically as:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (both [tex]\( 100 \, \text{kg} \)[/tex] in this case),
- [tex]\( r \)[/tex] is the distance between the centers of the two masses ( [tex]\( 2 \, \text{m} \)[/tex] in this case).
Substitute the given values into the formula:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{100 \, \text{kg} \cdot 100 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Then the formula becomes:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} = 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
Then multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 2500 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 16675 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 1.6675 \times 10^{-7} \, \text{N} \][/tex]
Therefore, the force of gravity between the two astronauts is:
[tex]\[ \boxed{1.67 \times 10^{-7} \, \text{N}} \][/tex]
Thus, the correct answer is:
C. [tex]\(1.67 \times 10^{-7} \, \text{N} \)[/tex]
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)[/tex]),
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects (both [tex]\( 100 \, \text{kg} \)[/tex] in this case),
- [tex]\( r \)[/tex] is the distance between the centers of the two masses ( [tex]\( 2 \, \text{m} \)[/tex] in this case).
Substitute the given values into the formula:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{100 \, \text{kg} \cdot 100 \, \text{kg}}{(2 \, \text{m})^2} \][/tex]
Calculate the denominator:
[tex]\[ (2 \, \text{m})^2 = 4 \, \text{m}^2 \][/tex]
Then the formula becomes:
[tex]\[ F = (6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} \][/tex]
Simplify the fraction:
[tex]\[ \frac{10000 \, \text{kg}^2}{4 \, \text{m}^2} = 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
Then multiply by the gravitational constant [tex]\( G \)[/tex]:
[tex]\[ F = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \cdot 2500 \, \text{kg}^2 / \text{m}^2 \][/tex]
[tex]\[ F = 6.67 \times 2500 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 16675 \times 10^{-11} \, \text{N} \][/tex]
[tex]\[ F = 1.6675 \times 10^{-7} \, \text{N} \][/tex]
Therefore, the force of gravity between the two astronauts is:
[tex]\[ \boxed{1.67 \times 10^{-7} \, \text{N}} \][/tex]
Thus, the correct answer is:
C. [tex]\(1.67 \times 10^{-7} \, \text{N} \)[/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.