Discover a wealth of knowledge and get your questions answered on IDNLearn.com. Get accurate and detailed answers to your questions from our knowledgeable and dedicated community members.
Sagot :
Let's simplify the given expression step by step:
Given expression:
[tex]$ \frac{n+2}{2n+2} + \frac{3}{2n} $[/tex]
1. Simplify the first fraction [tex]\(\frac{n+2}{2n+2}\)[/tex]:
Notice that both the numerator and the denominator can be divided by 2:
[tex]$ \frac{n+2}{2n+2} = \frac{n+2}{2(n+1)} = \frac{n+2}{2(n+1)} $[/tex]
Thus, the simplified first fraction is:
[tex]$ \frac{n+2}{2(n+1)} $[/tex]
2. The second fraction remains as:
[tex]$ \frac{3}{2n} $[/tex]
3. To add the two fractions [tex]\(\frac{n+2}{2(n+1)} + \frac{3}{2n}\)[/tex], we need a common denominator. The common denominator for [tex]$\frac{n+2}{2(n+1)}$[/tex] and [tex]$\frac{3}{2n}$[/tex] is:
[tex]$ 2n(n+1) $[/tex]
4. Rewrite each fraction with the common denominator:
For [tex]\(\frac{n+2}{2(n+1)}\)[/tex]:
[tex]$ \frac{n+2}{2(n+1)} = \frac{(n+2)n}{2n(n+1)} = \frac{n^2 + 2n}{2n(n+1)} $[/tex]
For [tex]\(\frac{3}{2n}\)[/tex]:
[tex]$ \frac{3}{2n} = \frac{3(n+1)}{2n(n+1)} = \frac{3n + 3}{2n(n+1)} $[/tex]
5. Add the two fractions together:
[tex]$ \frac{n^2 + 2n}{2n(n+1)} + \frac{3n + 3}{2n(n+1)} = \frac{(n^2 + 2n) + (3n + 3)}{2n(n+1)} $[/tex]
6. Combine like terms in the numerator:
[tex]$ \frac{n^2 + 2n + 3n + 3}{2n(n+1)} = \frac{n^2 + 5n + 3}{2n(n+1)} $[/tex]
Hence, the simplified expression is:
[tex]$ \frac{n^2 + 5n + 3}{2n(n+1)} $[/tex]
Review the given options:
A) [tex]\(\frac{-n^2 + 3n + 3}{2n(n+1)}\)[/tex]
B) [tex]\(\frac{n - n^2 + 6}{4n(n+1)}\)[/tex]
C) [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex]
D) [tex]\(\frac{5}{2(2n + 1)}\)[/tex]
Comparing our result [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex] to the options, we see that the correct choice is:
C) [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex]
Given expression:
[tex]$ \frac{n+2}{2n+2} + \frac{3}{2n} $[/tex]
1. Simplify the first fraction [tex]\(\frac{n+2}{2n+2}\)[/tex]:
Notice that both the numerator and the denominator can be divided by 2:
[tex]$ \frac{n+2}{2n+2} = \frac{n+2}{2(n+1)} = \frac{n+2}{2(n+1)} $[/tex]
Thus, the simplified first fraction is:
[tex]$ \frac{n+2}{2(n+1)} $[/tex]
2. The second fraction remains as:
[tex]$ \frac{3}{2n} $[/tex]
3. To add the two fractions [tex]\(\frac{n+2}{2(n+1)} + \frac{3}{2n}\)[/tex], we need a common denominator. The common denominator for [tex]$\frac{n+2}{2(n+1)}$[/tex] and [tex]$\frac{3}{2n}$[/tex] is:
[tex]$ 2n(n+1) $[/tex]
4. Rewrite each fraction with the common denominator:
For [tex]\(\frac{n+2}{2(n+1)}\)[/tex]:
[tex]$ \frac{n+2}{2(n+1)} = \frac{(n+2)n}{2n(n+1)} = \frac{n^2 + 2n}{2n(n+1)} $[/tex]
For [tex]\(\frac{3}{2n}\)[/tex]:
[tex]$ \frac{3}{2n} = \frac{3(n+1)}{2n(n+1)} = \frac{3n + 3}{2n(n+1)} $[/tex]
5. Add the two fractions together:
[tex]$ \frac{n^2 + 2n}{2n(n+1)} + \frac{3n + 3}{2n(n+1)} = \frac{(n^2 + 2n) + (3n + 3)}{2n(n+1)} $[/tex]
6. Combine like terms in the numerator:
[tex]$ \frac{n^2 + 2n + 3n + 3}{2n(n+1)} = \frac{n^2 + 5n + 3}{2n(n+1)} $[/tex]
Hence, the simplified expression is:
[tex]$ \frac{n^2 + 5n + 3}{2n(n+1)} $[/tex]
Review the given options:
A) [tex]\(\frac{-n^2 + 3n + 3}{2n(n+1)}\)[/tex]
B) [tex]\(\frac{n - n^2 + 6}{4n(n+1)}\)[/tex]
C) [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex]
D) [tex]\(\frac{5}{2(2n + 1)}\)[/tex]
Comparing our result [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex] to the options, we see that the correct choice is:
C) [tex]\(\frac{n^2 + 5n + 3}{2n(n+1)}\)[/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.