Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Ask anything and receive thorough, reliable answers from our community of experienced professionals.
Sagot :
Certainly! Let's solve this problem step-by-step.
### Case 1: Starting from a stationary position to [tex]\( 5 \, m/s \)[/tex] in [tex]\( 20 \, s \)[/tex]
1. Initial velocity ([tex]\( u_1 \)[/tex]): [tex]\( 0 \, m/s \)[/tex]
2. Final velocity ([tex]\( v_1 \)[/tex]): [tex]\( 5 \, m/s \)[/tex]
3. Time taken ([tex]\( t_1 \)[/tex]): [tex]\( 20 \, s \)[/tex]
To calculate the acceleration ([tex]\( a_1 \)[/tex]), we use the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a_1 = \frac{5 \, m/s - 0 \, m/s}{20 \, s} \][/tex]
[tex]\[ a_1 = \frac{5}{20} \][/tex]
[tex]\[ a_1 = 0.25 \, m/s^2 \][/tex]
So, the acceleration in the first case is [tex]\( 0.25 \, m/s^2 \)[/tex].
### Case 2: From [tex]\( 5 \, m/s \)[/tex] to [tex]\( 3 \, m/s \)[/tex] in [tex]\( 6 \, s \)[/tex]
1. Initial velocity ([tex]\( u_2 \)[/tex]): [tex]\( 5 \, m/s \)[/tex]
2. Final velocity ([tex]\( v_2 \)[/tex]): [tex]\( 3 \, m/s \)[/tex]
3. Time taken ([tex]\( t_2 \)[/tex]): [tex]\( 6 \, s \)[/tex]
To calculate the acceleration ([tex]\( a_2 \)[/tex]), we again use the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a_2 = \frac{3 \, m/s - 5 \, m/s}{6 \, s} \][/tex]
[tex]\[ a_2 = \frac{-2}{6} \][/tex]
[tex]\[ a_2 = -0.333 \, m/s^2 \][/tex]
So, the acceleration in the second case is [tex]\( -0.333 \, m/s^2 \)[/tex] (negative acceleration indicates deceleration).
### Summary
- Acceleration from stationary to [tex]\( 5 \, m/s \)[/tex] in [tex]\( 20 \, s \)[/tex]: [tex]\( 0.25 \, m/s^2 \)[/tex]
- Acceleration from [tex]\( 5 \, m/s \)[/tex] to [tex]\( 3 \, m/s \)[/tex] in [tex]\( 6 \, s \)[/tex]: [tex]\( -0.333 \, m/s^2 \)[/tex]
These are the accelerations for both cases.
### Case 1: Starting from a stationary position to [tex]\( 5 \, m/s \)[/tex] in [tex]\( 20 \, s \)[/tex]
1. Initial velocity ([tex]\( u_1 \)[/tex]): [tex]\( 0 \, m/s \)[/tex]
2. Final velocity ([tex]\( v_1 \)[/tex]): [tex]\( 5 \, m/s \)[/tex]
3. Time taken ([tex]\( t_1 \)[/tex]): [tex]\( 20 \, s \)[/tex]
To calculate the acceleration ([tex]\( a_1 \)[/tex]), we use the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a_1 = \frac{5 \, m/s - 0 \, m/s}{20 \, s} \][/tex]
[tex]\[ a_1 = \frac{5}{20} \][/tex]
[tex]\[ a_1 = 0.25 \, m/s^2 \][/tex]
So, the acceleration in the first case is [tex]\( 0.25 \, m/s^2 \)[/tex].
### Case 2: From [tex]\( 5 \, m/s \)[/tex] to [tex]\( 3 \, m/s \)[/tex] in [tex]\( 6 \, s \)[/tex]
1. Initial velocity ([tex]\( u_2 \)[/tex]): [tex]\( 5 \, m/s \)[/tex]
2. Final velocity ([tex]\( v_2 \)[/tex]): [tex]\( 3 \, m/s \)[/tex]
3. Time taken ([tex]\( t_2 \)[/tex]): [tex]\( 6 \, s \)[/tex]
To calculate the acceleration ([tex]\( a_2 \)[/tex]), we again use the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a_2 = \frac{3 \, m/s - 5 \, m/s}{6 \, s} \][/tex]
[tex]\[ a_2 = \frac{-2}{6} \][/tex]
[tex]\[ a_2 = -0.333 \, m/s^2 \][/tex]
So, the acceleration in the second case is [tex]\( -0.333 \, m/s^2 \)[/tex] (negative acceleration indicates deceleration).
### Summary
- Acceleration from stationary to [tex]\( 5 \, m/s \)[/tex] in [tex]\( 20 \, s \)[/tex]: [tex]\( 0.25 \, m/s^2 \)[/tex]
- Acceleration from [tex]\( 5 \, m/s \)[/tex] to [tex]\( 3 \, m/s \)[/tex] in [tex]\( 6 \, s \)[/tex]: [tex]\( -0.333 \, m/s^2 \)[/tex]
These are the accelerations for both cases.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.