Connect with a community that values knowledge and expertise on IDNLearn.com. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.
Sagot :
To solve the problem and find the magnitude and direction of the spacecraft's initial velocity before the engines were turned on, follow these steps:
1. Extract Given Data:
- Acceleration in the [tex]\( x \)[/tex]-direction, [tex]\( a_x = 5.10 \, \text{m/s}^2 \)[/tex].
- Acceleration in the [tex]\( y \)[/tex]-direction, [tex]\( a_y = 7.30 \, \text{m/s}^2 \)[/tex].
- Time the engines were on, [tex]\( t = 630 \, \text{s} \)[/tex].
- Final velocity in the [tex]\( x \)[/tex]-direction, [tex]\( v_{x_{\text{final}}} = 3740 \, \text{m/s} \)[/tex].
- Final velocity in the [tex]\( y \)[/tex]-direction, [tex]\( v_{y_{\text{final}}} = 4472 \, \text{m/s} \)[/tex].
2. Calculate Initial Velocities:
- For the [tex]\( x \)[/tex]-direction:
[tex]\[ v_{x_{\text{initial}}} = v_{x_{\text{final}}} - a_x \times t \][/tex]
Substituting the given values:
[tex]\[ v_{x_{\text{initial}}} = 3740 \, \text{m/s} - (5.10 \, \text{m/s}^2 \times 630 \, \text{s}) = 527 \, \text{m/s} \][/tex]
- For the [tex]\( y \)[/tex]-direction:
[tex]\[ v_{y_{\text{initial}}} = v_{y_{\text{final}}} - a_y \times t \][/tex]
Substituting the given values:
[tex]\[ v_{y_{\text{initial}}} = 4472 \, \text{m/s} - (7.30 \, \text{m/s}^2 \times 630 \, \text{s}) = -127 \, \text{m/s} \][/tex]
3. Calculate the Magnitude of the Initial Velocity:
The magnitude of the initial velocity [tex]\( v_{\text{initial}} \)[/tex] can be found using the Pythagorean theorem:
[tex]\[ v_{\text{initial}} = \sqrt{(v_{x_{\text{initial}}})^2 + (v_{y_{\text{initial}}})^2} \][/tex]
Substituting the values:
[tex]\[ v_{\text{initial}} = \sqrt{(527)^2 + (-127)^2} \approx 542.09 \, \text{m/s} \][/tex]
4. Calculate the Direction of the Initial Velocity:
The direction of the initial velocity θ, measured counterclockwise from the [tex]\( +x \)[/tex]-axis, can be found using the inverse tangent function:
[tex]\[ \theta = \tan^{-2} \left( \frac{v_{y_{\text{initial}}}}{v_{x_{\text{initial}}}} \right) \][/tex]
Substituting the values:
[tex]\[ \theta = \tan^{-2} \left( \frac{-127}{527} \right) \approx -13.55^\circ \][/tex]
Since the arctangent function gives an angle with respect to the [tex]\( x \)[/tex]-axis, and the result is negative, this angle indicates a direction below the positive [tex]\( x \)[/tex]-axis (clockwise). However, when describing direction as counterclockwise from the [tex]\( +x \)[/tex]-axis, use the negative sign as is to maintain convention.
Thus, the magnitude of the spacecraft's initial velocity is approximately [tex]\( 542.09 \, \text{m/s} \)[/tex] and the direction is [tex]\( -13.55^\circ \)[/tex] counterclockwise from the [tex]\( +x \)[/tex]-axis.
1. Extract Given Data:
- Acceleration in the [tex]\( x \)[/tex]-direction, [tex]\( a_x = 5.10 \, \text{m/s}^2 \)[/tex].
- Acceleration in the [tex]\( y \)[/tex]-direction, [tex]\( a_y = 7.30 \, \text{m/s}^2 \)[/tex].
- Time the engines were on, [tex]\( t = 630 \, \text{s} \)[/tex].
- Final velocity in the [tex]\( x \)[/tex]-direction, [tex]\( v_{x_{\text{final}}} = 3740 \, \text{m/s} \)[/tex].
- Final velocity in the [tex]\( y \)[/tex]-direction, [tex]\( v_{y_{\text{final}}} = 4472 \, \text{m/s} \)[/tex].
2. Calculate Initial Velocities:
- For the [tex]\( x \)[/tex]-direction:
[tex]\[ v_{x_{\text{initial}}} = v_{x_{\text{final}}} - a_x \times t \][/tex]
Substituting the given values:
[tex]\[ v_{x_{\text{initial}}} = 3740 \, \text{m/s} - (5.10 \, \text{m/s}^2 \times 630 \, \text{s}) = 527 \, \text{m/s} \][/tex]
- For the [tex]\( y \)[/tex]-direction:
[tex]\[ v_{y_{\text{initial}}} = v_{y_{\text{final}}} - a_y \times t \][/tex]
Substituting the given values:
[tex]\[ v_{y_{\text{initial}}} = 4472 \, \text{m/s} - (7.30 \, \text{m/s}^2 \times 630 \, \text{s}) = -127 \, \text{m/s} \][/tex]
3. Calculate the Magnitude of the Initial Velocity:
The magnitude of the initial velocity [tex]\( v_{\text{initial}} \)[/tex] can be found using the Pythagorean theorem:
[tex]\[ v_{\text{initial}} = \sqrt{(v_{x_{\text{initial}}})^2 + (v_{y_{\text{initial}}})^2} \][/tex]
Substituting the values:
[tex]\[ v_{\text{initial}} = \sqrt{(527)^2 + (-127)^2} \approx 542.09 \, \text{m/s} \][/tex]
4. Calculate the Direction of the Initial Velocity:
The direction of the initial velocity θ, measured counterclockwise from the [tex]\( +x \)[/tex]-axis, can be found using the inverse tangent function:
[tex]\[ \theta = \tan^{-2} \left( \frac{v_{y_{\text{initial}}}}{v_{x_{\text{initial}}}} \right) \][/tex]
Substituting the values:
[tex]\[ \theta = \tan^{-2} \left( \frac{-127}{527} \right) \approx -13.55^\circ \][/tex]
Since the arctangent function gives an angle with respect to the [tex]\( x \)[/tex]-axis, and the result is negative, this angle indicates a direction below the positive [tex]\( x \)[/tex]-axis (clockwise). However, when describing direction as counterclockwise from the [tex]\( +x \)[/tex]-axis, use the negative sign as is to maintain convention.
Thus, the magnitude of the spacecraft's initial velocity is approximately [tex]\( 542.09 \, \text{m/s} \)[/tex] and the direction is [tex]\( -13.55^\circ \)[/tex] counterclockwise from the [tex]\( +x \)[/tex]-axis.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.