IDNLearn.com provides a platform for sharing and gaining valuable knowledge. Our experts are ready to provide prompt and detailed answers to any questions you may have.
Sagot :
To graph the function [tex]\( g(x) = \frac{x^2 - 4x + 4}{x} \)[/tex], let's follow a step-by-step approach:
### Step 1: Simplify the Function
1. Simplify the expression: Before graphing, simplify the given function if possible.
[tex]\[ g(x) = \frac{x^2 - 4x + 4}{x} \][/tex]
Notice that the numerator [tex]\( x^2 - 4x + 4 \)[/tex] can be factored:
[tex]\[ x^2 - 4x + 4 = (x - 2)^2 \][/tex]
So,
[tex]\[ g(x) = \frac{(x - 2)^2}{x} \][/tex]
### Step 2: Rewrite the Simplified Expression
2. Rewrite the simplified function:
[tex]\[ g(x) = \frac{(x - 2)^2}{x} = \frac{x - 2}{x} \cdot \frac{x - 2}{1} = \left(1 - \frac{2}{x}\right) \cdot (x - 2) \][/tex]
Breaking it further:
[tex]\[ g(x) = \left(\frac{x^2 - 4x + 4}{x}\right) = \frac{x(x - 4) + 4}{x} = x - 4 + \frac{4}{x} = x - 4 + \frac{4}{x} = x -4 + \frac{5}{x} \][/tex]
### Step 3: Determine Critical Points and Asymptotes
3. Evaluate critical points and asymptotes:
- The function is undefined at [tex]\( x = 0 \)[/tex] because of division by zero.
- As [tex]\( x \rightarrow \infty \)[/tex] or [tex]\( x \rightarrow -\infty \)[/tex], the term [tex]\( \frac{4}{x} \rightarrow 0 \)[/tex], so the function behaves like [tex]\( x - 4 \)[/tex].
### Step 4: Examine Key Points
4. Calculate key points for clearer plotting:
[tex]\[ g(x) = \frac{(x-2)^2}{x} \][/tex]
For specific values of [tex]\( x \)[/tex]:
- [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = \frac{(-2 - 2)^2}{-2} = \frac{16}{-2} = -8 \][/tex]
- [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = \frac{(-1 - 2)^2}{-1} = \frac{9}{-1} = -9 \][/tex]
- [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = \frac{(1 - 2)^2}{1} = \frac{1}{1} = 1 \][/tex]
- [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = \frac{(2 - 2)^2}{2} = \frac{0}{2} = 0 \][/tex]
- [tex]\( x = 4 \)[/tex]:
[tex]\[ g(4) = \frac{(4 - 2)^2}{4} = \frac{4}{4} = 1 \][/tex]
### Step 5: Sketch the Graph
5. Plot the function based on simplified expression and key points:
- The simplified and key-points calculations indicate asymptotic behavior around [tex]\( x = 0 \)[/tex] and linear trend [tex]\( g(x) \rightarrow x - 4 \)[/tex] for large [tex]\( x \)[/tex].
Steps to sketch:
1. Draw the coordinate axes.
2. Identify and mark the point of discontinuity at [tex]\( x = 0 \)[/tex].
3. Plot calculated points:
- [tex]\( (-2, -8) \)[/tex]
- [tex]\( (-1, -9) \)[/tex]
- [tex]\( (1, 1) \)[/tex]
- [tex]\( (2, 0) \)[/tex]
- [tex]\( (4, 1) \)[/tex]
4. Show behavior around [tex]\( x = 0 \)[/tex]:
- As [tex]\( x \rightarrow 0^{-}, g(x) \rightarrow \infty \)[/tex].
- As [tex]\( x \rightarrow 0^{+}, g(x) \rightarrow \infty \)[/tex].
5. Draw the curves smoothly, considering asymptotic behavior at [tex]\( x = 0 \)[/tex] and [tex]\( x \rightarrow \pm \infty \)[/tex].
### Final Graph Overview
The graph will feature:
- Vertical asymptote at [tex]\( x = 0 \)[/tex].
- A parabolic segment opening still crossing along [tex]\( x \rightarrow x - 4 \)[/tex] for large [tex]\( x \)[/tex].
### Refined Graph Defined
- [tex]\[ g(x) = \frac{(x - 2)^2}{x} \][/tex] showing descriptive changes across insightful points confirms function shape across varied domains (restricted as [tex]\( x \neq 0 \)[/tex]).
Thus, this thoroughly exception dynamic analysis completes comprehensive specifics, ensuring \( g(x) = \dots(x)...\over extended scales.
### Step 1: Simplify the Function
1. Simplify the expression: Before graphing, simplify the given function if possible.
[tex]\[ g(x) = \frac{x^2 - 4x + 4}{x} \][/tex]
Notice that the numerator [tex]\( x^2 - 4x + 4 \)[/tex] can be factored:
[tex]\[ x^2 - 4x + 4 = (x - 2)^2 \][/tex]
So,
[tex]\[ g(x) = \frac{(x - 2)^2}{x} \][/tex]
### Step 2: Rewrite the Simplified Expression
2. Rewrite the simplified function:
[tex]\[ g(x) = \frac{(x - 2)^2}{x} = \frac{x - 2}{x} \cdot \frac{x - 2}{1} = \left(1 - \frac{2}{x}\right) \cdot (x - 2) \][/tex]
Breaking it further:
[tex]\[ g(x) = \left(\frac{x^2 - 4x + 4}{x}\right) = \frac{x(x - 4) + 4}{x} = x - 4 + \frac{4}{x} = x - 4 + \frac{4}{x} = x -4 + \frac{5}{x} \][/tex]
### Step 3: Determine Critical Points and Asymptotes
3. Evaluate critical points and asymptotes:
- The function is undefined at [tex]\( x = 0 \)[/tex] because of division by zero.
- As [tex]\( x \rightarrow \infty \)[/tex] or [tex]\( x \rightarrow -\infty \)[/tex], the term [tex]\( \frac{4}{x} \rightarrow 0 \)[/tex], so the function behaves like [tex]\( x - 4 \)[/tex].
### Step 4: Examine Key Points
4. Calculate key points for clearer plotting:
[tex]\[ g(x) = \frac{(x-2)^2}{x} \][/tex]
For specific values of [tex]\( x \)[/tex]:
- [tex]\( x = -2 \)[/tex]:
[tex]\[ g(-2) = \frac{(-2 - 2)^2}{-2} = \frac{16}{-2} = -8 \][/tex]
- [tex]\( x = -1 \)[/tex]:
[tex]\[ g(-1) = \frac{(-1 - 2)^2}{-1} = \frac{9}{-1} = -9 \][/tex]
- [tex]\( x = 1 \)[/tex]:
[tex]\[ g(1) = \frac{(1 - 2)^2}{1} = \frac{1}{1} = 1 \][/tex]
- [tex]\( x = 2 \)[/tex]:
[tex]\[ g(2) = \frac{(2 - 2)^2}{2} = \frac{0}{2} = 0 \][/tex]
- [tex]\( x = 4 \)[/tex]:
[tex]\[ g(4) = \frac{(4 - 2)^2}{4} = \frac{4}{4} = 1 \][/tex]
### Step 5: Sketch the Graph
5. Plot the function based on simplified expression and key points:
- The simplified and key-points calculations indicate asymptotic behavior around [tex]\( x = 0 \)[/tex] and linear trend [tex]\( g(x) \rightarrow x - 4 \)[/tex] for large [tex]\( x \)[/tex].
Steps to sketch:
1. Draw the coordinate axes.
2. Identify and mark the point of discontinuity at [tex]\( x = 0 \)[/tex].
3. Plot calculated points:
- [tex]\( (-2, -8) \)[/tex]
- [tex]\( (-1, -9) \)[/tex]
- [tex]\( (1, 1) \)[/tex]
- [tex]\( (2, 0) \)[/tex]
- [tex]\( (4, 1) \)[/tex]
4. Show behavior around [tex]\( x = 0 \)[/tex]:
- As [tex]\( x \rightarrow 0^{-}, g(x) \rightarrow \infty \)[/tex].
- As [tex]\( x \rightarrow 0^{+}, g(x) \rightarrow \infty \)[/tex].
5. Draw the curves smoothly, considering asymptotic behavior at [tex]\( x = 0 \)[/tex] and [tex]\( x \rightarrow \pm \infty \)[/tex].
### Final Graph Overview
The graph will feature:
- Vertical asymptote at [tex]\( x = 0 \)[/tex].
- A parabolic segment opening still crossing along [tex]\( x \rightarrow x - 4 \)[/tex] for large [tex]\( x \)[/tex].
### Refined Graph Defined
- [tex]\[ g(x) = \frac{(x - 2)^2}{x} \][/tex] showing descriptive changes across insightful points confirms function shape across varied domains (restricted as [tex]\( x \neq 0 \)[/tex]).
Thus, this thoroughly exception dynamic analysis completes comprehensive specifics, ensuring \( g(x) = \dots(x)...\over extended scales.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.