Get the most out of your questions with the extensive resources available on IDNLearn.com. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
To show that quadrilateral KITE with vertices [tex]\(K (0, -2), I (1, 2), T (7, 5)\)[/tex], and [tex]\(E (4, -1)\)[/tex] is a kite, we need to verify specific properties of the distances between its vertices.
Step-by-Step Solution:
1. Calculate the distance [tex]\(K I\)[/tex]:
The distance formula is:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
For vertices [tex]\(K (0, -2)\)[/tex] and [tex]\(I (1, 2)\)[/tex]:
[tex]\[ K I = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1 + 16} = \sqrt{17} \][/tex]
Thus, [tex]\(K I = \sqrt{17}\)[/tex].
2. Calculate the distance [tex]\(K E\)[/tex]:
For vertices [tex]\(K (0, -2)\)[/tex] and [tex]\(E (4, -1)\)[/tex]:
[tex]\[ K E = \sqrt{(4 - 0)^2 + (-1 - (-2))^2} = \sqrt{16 + 1} = \sqrt{17} \][/tex]
Thus, [tex]\(K E = \sqrt{17}\)[/tex].
3. Calculate the distance [tex]\(I T\)[/tex]:
For vertices [tex]\(I (1, 2)\)[/tex] and [tex]\(T (7, 5)\)[/tex]:
[tex]\[ I T = \sqrt{(7 - 1)^2 + (5 - 2)^2} = \sqrt{36 + 9} = \sqrt{45} = 3\sqrt{5} \][/tex]
Thus, [tex]\(I T = 3\sqrt{5}\)[/tex].
4. Calculate the distance [tex]\(T E\)[/tex]:
For vertices [tex]\(T (7, 5)\)[/tex] and [tex]\(E (4, -1)\)[/tex]:
[tex]\[ T E = \sqrt{(4 - 7)^2 + (-1 - 5)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5} \][/tex]
Thus, [tex]\(T E = 3\sqrt{5}\)[/tex].
5. Verification:
- We find that
[tex]\[ K I = K E = \sqrt{17} \][/tex]
and
[tex]\[ I T = T E = 3\sqrt{5} \][/tex]
- A kite is a quadrilateral with two pairs of adjacent sides that are equal. Here, [tex]\(K I = K E\)[/tex] and [tex]\(I T = T E\)[/tex].
Therefore, KITE is a kite because [tex]\(K I = K E\)[/tex] and [tex]\(I T = T E\)[/tex].
Step-by-Step Solution:
1. Calculate the distance [tex]\(K I\)[/tex]:
The distance formula is:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
For vertices [tex]\(K (0, -2)\)[/tex] and [tex]\(I (1, 2)\)[/tex]:
[tex]\[ K I = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1 + 16} = \sqrt{17} \][/tex]
Thus, [tex]\(K I = \sqrt{17}\)[/tex].
2. Calculate the distance [tex]\(K E\)[/tex]:
For vertices [tex]\(K (0, -2)\)[/tex] and [tex]\(E (4, -1)\)[/tex]:
[tex]\[ K E = \sqrt{(4 - 0)^2 + (-1 - (-2))^2} = \sqrt{16 + 1} = \sqrt{17} \][/tex]
Thus, [tex]\(K E = \sqrt{17}\)[/tex].
3. Calculate the distance [tex]\(I T\)[/tex]:
For vertices [tex]\(I (1, 2)\)[/tex] and [tex]\(T (7, 5)\)[/tex]:
[tex]\[ I T = \sqrt{(7 - 1)^2 + (5 - 2)^2} = \sqrt{36 + 9} = \sqrt{45} = 3\sqrt{5} \][/tex]
Thus, [tex]\(I T = 3\sqrt{5}\)[/tex].
4. Calculate the distance [tex]\(T E\)[/tex]:
For vertices [tex]\(T (7, 5)\)[/tex] and [tex]\(E (4, -1)\)[/tex]:
[tex]\[ T E = \sqrt{(4 - 7)^2 + (-1 - 5)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5} \][/tex]
Thus, [tex]\(T E = 3\sqrt{5}\)[/tex].
5. Verification:
- We find that
[tex]\[ K I = K E = \sqrt{17} \][/tex]
and
[tex]\[ I T = T E = 3\sqrt{5} \][/tex]
- A kite is a quadrilateral with two pairs of adjacent sides that are equal. Here, [tex]\(K I = K E\)[/tex] and [tex]\(I T = T E\)[/tex].
Therefore, KITE is a kite because [tex]\(K I = K E\)[/tex] and [tex]\(I T = T E\)[/tex].
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.