Discover the best answers to your questions with the help of IDNLearn.com. Get accurate answers to your questions from our community of experts who are always ready to provide timely and relevant solutions.

Matrix A and Matrix B, defined below, are inverse matrices.

[tex]\[ A=\left[\begin{array}{lr}
2 & -6 \\
1 & -1
\end{array}\right] \quad B=\left[\begin{array}{cc}
-3 & 2 \\
2 & -1
\end{array}\right] \][/tex]

A. True
B. False


Sagot :

To determine whether matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are inverses of each other, we need to compute their product and verify if the result is the identity matrix.

Given:
[tex]\[ A = \begin{bmatrix} 2 & -6 \\ 1 & -1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \][/tex]

First, let's calculate the product [tex]\( A \cdot B \)[/tex]:

[tex]\[ A \cdot B = \begin{bmatrix} 2 & -6 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \][/tex]

We'll multiply the matrices step by step:

The element at the first row, first column of the product:
[tex]\[ (2 \times -3) + (-6 \times 2) = -6 + (-12) = -18 \][/tex]

The element at the first row, second column of the product:
[tex]\[ (2 \times 2) + (-6 \times -1) = 4 + 6 = 10 \][/tex]

The element at the second row, first column of the product:
[tex]\[ (1 \times -3) + (-1 \times 2) = -3 + (-2) = -5 \][/tex]

The element at the second row, second column of the product:
[tex]\[ (1 \times 2) + (-1 \times -1) = 2 + 1 = 3 \][/tex]

Therefore, the product of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cdot B = \begin{bmatrix} -18 & 10 \\ -5 & 3 \end{bmatrix} \][/tex]

The identity matrix for 2x2 matrices is:
[tex]\[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]

Since:
[tex]\[ A \cdot B \ne I = \begin{bmatrix} -18 & 10 \\ -5 & 3 \end{bmatrix} \ne \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]

Thus, the product [tex]\( A \cdot B \)[/tex] is not the identity matrix.

Therefore, matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are not inverse matrices.

The correct answer is:

False