Get insightful responses to your questions quickly and easily on IDNLearn.com. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
To determine whether matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are inverses of each other, we need to compute their product and verify if the result is the identity matrix.
Given:
[tex]\[ A = \begin{bmatrix} 2 & -6 \\ 1 & -1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \][/tex]
First, let's calculate the product [tex]\( A \cdot B \)[/tex]:
[tex]\[ A \cdot B = \begin{bmatrix} 2 & -6 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \][/tex]
We'll multiply the matrices step by step:
The element at the first row, first column of the product:
[tex]\[ (2 \times -3) + (-6 \times 2) = -6 + (-12) = -18 \][/tex]
The element at the first row, second column of the product:
[tex]\[ (2 \times 2) + (-6 \times -1) = 4 + 6 = 10 \][/tex]
The element at the second row, first column of the product:
[tex]\[ (1 \times -3) + (-1 \times 2) = -3 + (-2) = -5 \][/tex]
The element at the second row, second column of the product:
[tex]\[ (1 \times 2) + (-1 \times -1) = 2 + 1 = 3 \][/tex]
Therefore, the product of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cdot B = \begin{bmatrix} -18 & 10 \\ -5 & 3 \end{bmatrix} \][/tex]
The identity matrix for 2x2 matrices is:
[tex]\[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
Since:
[tex]\[ A \cdot B \ne I = \begin{bmatrix} -18 & 10 \\ -5 & 3 \end{bmatrix} \ne \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
Thus, the product [tex]\( A \cdot B \)[/tex] is not the identity matrix.
Therefore, matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are not inverse matrices.
The correct answer is:
False
Given:
[tex]\[ A = \begin{bmatrix} 2 & -6 \\ 1 & -1 \end{bmatrix} \][/tex]
[tex]\[ B = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \][/tex]
First, let's calculate the product [tex]\( A \cdot B \)[/tex]:
[tex]\[ A \cdot B = \begin{bmatrix} 2 & -6 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \][/tex]
We'll multiply the matrices step by step:
The element at the first row, first column of the product:
[tex]\[ (2 \times -3) + (-6 \times 2) = -6 + (-12) = -18 \][/tex]
The element at the first row, second column of the product:
[tex]\[ (2 \times 2) + (-6 \times -1) = 4 + 6 = 10 \][/tex]
The element at the second row, first column of the product:
[tex]\[ (1 \times -3) + (-1 \times 2) = -3 + (-2) = -5 \][/tex]
The element at the second row, second column of the product:
[tex]\[ (1 \times 2) + (-1 \times -1) = 2 + 1 = 3 \][/tex]
Therefore, the product of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cdot B = \begin{bmatrix} -18 & 10 \\ -5 & 3 \end{bmatrix} \][/tex]
The identity matrix for 2x2 matrices is:
[tex]\[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
Since:
[tex]\[ A \cdot B \ne I = \begin{bmatrix} -18 & 10 \\ -5 & 3 \end{bmatrix} \ne \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \][/tex]
Thus, the product [tex]\( A \cdot B \)[/tex] is not the identity matrix.
Therefore, matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are not inverse matrices.
The correct answer is:
False
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.