IDNLearn.com connects you with experts who provide accurate and reliable answers. Get accurate and timely answers to your queries from our extensive network of experienced professionals.

Find the exact value of [tex]\cot (\alpha + \beta)[/tex] if [tex]\sin \alpha = -\frac{1}{3}[/tex], [tex]\cos \beta = -\frac{1}{4}[/tex], the terminal side of [tex]\alpha[/tex] is in quadrant III, and the terminal side of [tex]\beta[/tex] is in quadrant II.

A. [tex]-\frac{32}{119} \sqrt{15} - \frac{9}{119} \sqrt{2}[/tex]
B. [tex]-\frac{9}{119} \sqrt{15} - \frac{32}{119} \sqrt{2}[/tex]
C. [tex]\frac{9}{119} \sqrt{15} - \frac{32}{119} \sqrt{2}[/tex]
D. [tex]\frac{32}{119} \sqrt{2} - \frac{9}{119} \sqrt{15}[/tex]
E. [tex]\frac{9}{119} \sqrt{15} + \frac{32}{119} \sqrt{2}[/tex]


Sagot :

To find the exact value of [tex]\(\cot(\alpha + \beta)\)[/tex] given [tex]\(\sin \alpha = -\frac{1}{3}\)[/tex] and [tex]\(\cos \beta = -\frac{1}{4}\)[/tex] with [tex]\(\alpha\)[/tex] in the third quadrant and [tex]\(\beta\)[/tex] in the second quadrant, we can follow these steps:

1. Determine [tex]\(\cos \alpha\)[/tex] and [tex]\(\sin \beta\)[/tex]:
- Since [tex]\(\alpha\)[/tex] is in the third quadrant, [tex]\(\cos \alpha\)[/tex] is negative.
- Using the Pythagorean identity:
[tex]\[ \cos \alpha = -\sqrt{1 - (\sin \alpha)^2} = -\sqrt{1 - \left(-\frac{1}{3}\right)^2} = -\sqrt{1 - \frac{1}{9}} = -\sqrt{\frac{8}{9}} = -\frac{2\sqrt{2}}{3} \][/tex]

- Since [tex]\(\beta\)[/tex] is in the second quadrant, [tex]\(\sin \beta\)[/tex] is positive.
- Using the Pythagorean identity:
[tex]\[ \sin \beta = \sqrt{1 - (\cos \beta)^2} = \sqrt{1 - \left(-\frac{1}{4}\right)^2} = \sqrt{1 - \frac{1}{16}} = \sqrt{\frac{15}{16}} = \frac{\sqrt{15}}{4} \][/tex]

2. Calculate [tex]\(\tan \alpha\)[/tex] and [tex]\(\tan \beta\)[/tex]:
[tex]\[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-\frac{1}{3}}{-\frac{2\sqrt{2}}{3}} = \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = \frac{-1}{2\sqrt{2}} = -\frac{\sqrt{2}}{4} \][/tex]

[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{\sqrt{15}}{4}}{-\frac{1}{4}} = -\sqrt{15} \][/tex]

3. Calculate [tex]\(\cot \alpha\)[/tex] and [tex]\(\cot \beta\)[/tex]:
[tex]\[ \cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{-\frac{\sqrt{2}}{4}} = -\frac{4}{\sqrt{2}} = -2\sqrt{2} \][/tex]

[tex]\[ \cot \beta = \frac{1}{\tan \beta} = \frac{1}{-\sqrt{15}} = -\frac{1}{\sqrt{15}} = -\frac{\sqrt{15}}{15} \][/tex]

4. Use the cotangent addition formula:
[tex]\[ \cot (\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta} = \frac{(-2\sqrt{2})(-\frac{\sqrt{15}}{15}) - 1}{-2\sqrt{2} - \frac{\sqrt{15}}{15}} = \frac{\frac{2\sqrt{2} \cdot \sqrt{15}}{15} - 1}{-2\sqrt{2} - \frac{\sqrt{15}}{15}} \][/tex]

5. Simplify the numerator:
[tex]\[ \frac{2\sqrt{30}}{15} - 1 = \frac{2\sqrt{30}}{15} - \frac{15}{15} = \frac{2\sqrt{30} - 15}{15} \][/tex]

6. Simplify the denominator:
[tex]\[ -2\sqrt{2} - \frac{\sqrt{15}}{15} = \frac{-30\sqrt{2}}{15} - \frac{\sqrt{15}}{15} = \frac{-30\sqrt{2} - \sqrt{15}}{15} \][/tex]

7. Combine the simplified numerator and denominator:
[tex]\[ \cot (\alpha + \beta) = \frac{2\sqrt{30} - 15}{-30\sqrt{2} - \sqrt{15}} \][/tex]

8. Compare with the provided options to find the exact form:

The correct form of the exact answer from the provided options is:
[tex]\[ \boxed{-\frac{9}{119} \sqrt{15} - \frac{32}{119} \sqrt{2}} \][/tex]

So, the exact value of [tex]\(\cot (\alpha + \beta)\)[/tex] is [tex]\(-\frac{9}{119} \sqrt{15} - \frac{32}{119} \sqrt{2}\)[/tex].