Connect with experts and get insightful answers to your questions on IDNLearn.com. Find accurate and detailed answers to your questions from our experienced and dedicated community members.
Sagot :
Certainly! To solve this problem step-by-step, we need to use the relation given by the gas law [tex]\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)[/tex], where:
- [tex]\(P_1\)[/tex] is the initial pressure.
- [tex]\(T_1\)[/tex] is the initial temperature (in Kelvin).
- [tex]\(P_2\)[/tex] is the final pressure.
- [tex]\(T_2\)[/tex] is the final temperature (in Kelvin).
Let's start with converting the given temperatures to Kelvin:
1. Convert the initial temperature [tex]\(T_1\)[/tex] from Celsius to Kelvin:
Given [tex]\(T_1 = 25^\circ C\)[/tex],
[tex]\[ T_1 = 25 + 273.15 = 298.15 \text{ K} \][/tex]
2. Use the gas law to solve for the final temperature [tex]\(T_2\)[/tex] in Kelvin:
We are given the pressures and the relation:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
Rearranging this equation to solve for [tex]\(T_2\)[/tex]:
[tex]\[ T_2 = \frac{P_2 \cdot T_1}{P_1} \][/tex]
3. Substitute the values into the equation:
Given [tex]\(P_1 = 0.96 \text{ atm}\)[/tex], [tex]\(P_2 = 1.25 \text{ atm}\)[/tex], and [tex]\(T_1 = 298.15 \text{ K}\)[/tex],
[tex]\[ T_2 = \frac{1.25 \cdot 298.15}{0.96} \][/tex]
[tex]\[ T_2 = \frac{372.6875}{0.96} \approx 388.21614583333337 \text{ K} \][/tex]
4. Convert the final temperature [tex]\(T_2\)[/tex] from Kelvin back to Celsius:
[tex]\[ T_2 \text{ in Celsius} = T_2 - 273.15 = 388.21614583333337 - 273.15 = 115.0661458333334^\circ C \][/tex]
So, the new temperature of the gas is approximately [tex]\(388.216 \text{ K}\)[/tex] or, when converted to Celsius, likewise approximately [tex]\(115.066 \text{ °C}\)[/tex].
Thus, from the given choices, the closest correct answer is:
[tex]\[ 115^\circ C \][/tex]
- [tex]\(P_1\)[/tex] is the initial pressure.
- [tex]\(T_1\)[/tex] is the initial temperature (in Kelvin).
- [tex]\(P_2\)[/tex] is the final pressure.
- [tex]\(T_2\)[/tex] is the final temperature (in Kelvin).
Let's start with converting the given temperatures to Kelvin:
1. Convert the initial temperature [tex]\(T_1\)[/tex] from Celsius to Kelvin:
Given [tex]\(T_1 = 25^\circ C\)[/tex],
[tex]\[ T_1 = 25 + 273.15 = 298.15 \text{ K} \][/tex]
2. Use the gas law to solve for the final temperature [tex]\(T_2\)[/tex] in Kelvin:
We are given the pressures and the relation:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
Rearranging this equation to solve for [tex]\(T_2\)[/tex]:
[tex]\[ T_2 = \frac{P_2 \cdot T_1}{P_1} \][/tex]
3. Substitute the values into the equation:
Given [tex]\(P_1 = 0.96 \text{ atm}\)[/tex], [tex]\(P_2 = 1.25 \text{ atm}\)[/tex], and [tex]\(T_1 = 298.15 \text{ K}\)[/tex],
[tex]\[ T_2 = \frac{1.25 \cdot 298.15}{0.96} \][/tex]
[tex]\[ T_2 = \frac{372.6875}{0.96} \approx 388.21614583333337 \text{ K} \][/tex]
4. Convert the final temperature [tex]\(T_2\)[/tex] from Kelvin back to Celsius:
[tex]\[ T_2 \text{ in Celsius} = T_2 - 273.15 = 388.21614583333337 - 273.15 = 115.0661458333334^\circ C \][/tex]
So, the new temperature of the gas is approximately [tex]\(388.216 \text{ K}\)[/tex] or, when converted to Celsius, likewise approximately [tex]\(115.066 \text{ °C}\)[/tex].
Thus, from the given choices, the closest correct answer is:
[tex]\[ 115^\circ C \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.