Get expert insights and community support for your questions on IDNLearn.com. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
Certainly! To solve this problem step-by-step, we need to use the relation given by the gas law [tex]\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)[/tex], where:
- [tex]\(P_1\)[/tex] is the initial pressure.
- [tex]\(T_1\)[/tex] is the initial temperature (in Kelvin).
- [tex]\(P_2\)[/tex] is the final pressure.
- [tex]\(T_2\)[/tex] is the final temperature (in Kelvin).
Let's start with converting the given temperatures to Kelvin:
1. Convert the initial temperature [tex]\(T_1\)[/tex] from Celsius to Kelvin:
Given [tex]\(T_1 = 25^\circ C\)[/tex],
[tex]\[ T_1 = 25 + 273.15 = 298.15 \text{ K} \][/tex]
2. Use the gas law to solve for the final temperature [tex]\(T_2\)[/tex] in Kelvin:
We are given the pressures and the relation:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
Rearranging this equation to solve for [tex]\(T_2\)[/tex]:
[tex]\[ T_2 = \frac{P_2 \cdot T_1}{P_1} \][/tex]
3. Substitute the values into the equation:
Given [tex]\(P_1 = 0.96 \text{ atm}\)[/tex], [tex]\(P_2 = 1.25 \text{ atm}\)[/tex], and [tex]\(T_1 = 298.15 \text{ K}\)[/tex],
[tex]\[ T_2 = \frac{1.25 \cdot 298.15}{0.96} \][/tex]
[tex]\[ T_2 = \frac{372.6875}{0.96} \approx 388.21614583333337 \text{ K} \][/tex]
4. Convert the final temperature [tex]\(T_2\)[/tex] from Kelvin back to Celsius:
[tex]\[ T_2 \text{ in Celsius} = T_2 - 273.15 = 388.21614583333337 - 273.15 = 115.0661458333334^\circ C \][/tex]
So, the new temperature of the gas is approximately [tex]\(388.216 \text{ K}\)[/tex] or, when converted to Celsius, likewise approximately [tex]\(115.066 \text{ °C}\)[/tex].
Thus, from the given choices, the closest correct answer is:
[tex]\[ 115^\circ C \][/tex]
- [tex]\(P_1\)[/tex] is the initial pressure.
- [tex]\(T_1\)[/tex] is the initial temperature (in Kelvin).
- [tex]\(P_2\)[/tex] is the final pressure.
- [tex]\(T_2\)[/tex] is the final temperature (in Kelvin).
Let's start with converting the given temperatures to Kelvin:
1. Convert the initial temperature [tex]\(T_1\)[/tex] from Celsius to Kelvin:
Given [tex]\(T_1 = 25^\circ C\)[/tex],
[tex]\[ T_1 = 25 + 273.15 = 298.15 \text{ K} \][/tex]
2. Use the gas law to solve for the final temperature [tex]\(T_2\)[/tex] in Kelvin:
We are given the pressures and the relation:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
Rearranging this equation to solve for [tex]\(T_2\)[/tex]:
[tex]\[ T_2 = \frac{P_2 \cdot T_1}{P_1} \][/tex]
3. Substitute the values into the equation:
Given [tex]\(P_1 = 0.96 \text{ atm}\)[/tex], [tex]\(P_2 = 1.25 \text{ atm}\)[/tex], and [tex]\(T_1 = 298.15 \text{ K}\)[/tex],
[tex]\[ T_2 = \frac{1.25 \cdot 298.15}{0.96} \][/tex]
[tex]\[ T_2 = \frac{372.6875}{0.96} \approx 388.21614583333337 \text{ K} \][/tex]
4. Convert the final temperature [tex]\(T_2\)[/tex] from Kelvin back to Celsius:
[tex]\[ T_2 \text{ in Celsius} = T_2 - 273.15 = 388.21614583333337 - 273.15 = 115.0661458333334^\circ C \][/tex]
So, the new temperature of the gas is approximately [tex]\(388.216 \text{ K}\)[/tex] or, when converted to Celsius, likewise approximately [tex]\(115.066 \text{ °C}\)[/tex].
Thus, from the given choices, the closest correct answer is:
[tex]\[ 115^\circ C \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.