IDNLearn.com offers a unique blend of expert answers and community insights. Our experts provide timely and accurate responses to help you navigate any topic or issue with confidence.
Sagot :
Certainly! Let's tackle these two problems step by step.
### (a) Laurent Series Expansion of [tex]\( f(z) = \frac{1}{z^2 + 2z} \)[/tex] for [tex]\( 1 < |z-1| < 3 \)[/tex]
First, let's rewrite the function to make the singularities more apparent:
[tex]\[ f(z) = \frac{1}{z(z+2)} \][/tex]
This function has poles at [tex]\( z = 0 \)[/tex] and [tex]\( z = -2 \)[/tex]. To find the Laurent series for [tex]\( 1 < |z - 1| < 3 \)[/tex], we need to express [tex]\( f(z) \)[/tex] in a form that separates the singularities inside and outside the annulus.
We use partial fraction decomposition to rewrite [tex]\( f(z) \)[/tex]:
[tex]\[ f(z) = \frac{1}{z(z+2)} = \frac{A}{z} + \frac{B}{z+2} \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z+2) + Bz \][/tex]
Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = 2A \implies A = \frac{1}{2} \][/tex]
Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = -2B \implies B = -\frac{1}{2} \][/tex]
So the decomposition is:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{2(z+2)} \][/tex]
Now, in the given annulus [tex]\( 1 < |z-1| < 3 \)[/tex], we need to work with the term [tex]\( \frac{1}{2(z+2)} \)[/tex] by shifting the origin to [tex]\( z = 1 \)[/tex] using [tex]\( z+2 = (z-1) + 3 \)[/tex]:
[tex]\[ \frac{1}{z+2} = \frac{1}{(z-1)+3} = \frac{1}{3\left(1 + \frac{z-1}{3}\right)} \][/tex]
Using the geometric series expansion [tex]\( \frac{1}{1+w} = \sum_{n=0}^{\infty} (-w)^n \)[/tex], where [tex]\( w = \frac{z-1}{3} \)[/tex]:
[tex]\[ \frac{1}{z+2} = \frac{1}{3} \sum_{n=0}^{\infty} \left( -\frac{z-1}{3} \right)^n = \frac{1}{3} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \][/tex]
Combining the partial fractions:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{2} \left( \frac{1}{3} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \right) \][/tex]
Simplifying:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{6} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \][/tex]
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{6} \sum_{n=0}^{\infty} \left( -\frac{z-1}{3} \right)^n \][/tex]
### (b) Laurent Series Expansion of [tex]\( f(z) = z^2 \sin \left( \frac{1}{z^2} \right) \)[/tex] in the domain [tex]\( 0<|z|<\infty \)[/tex]
Firstly, recall the Maclaurin series expansion for [tex]\( \sin x \)[/tex]:
[tex]\[ \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \][/tex]
Substitute [tex]\( x = \frac{1}{z^2} \)[/tex]:
[tex]\[ \sin \left( \frac{1}{z^2} \right) = \sum_{n=0}^{\infty} \frac{(-1)^n \left( \frac{1}{z^2} \right)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{4n+2}} \][/tex]
Now, multiply by [tex]\( z^2 \)[/tex]:
[tex]\[ f(z) = z^2 \sin \left( \frac{1}{z^2} \right) = z^2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{4n+2}} \][/tex]
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{z^2}{z^{4n+2}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2-4n-2} \][/tex]
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{-4n} \][/tex]
Therefore, the Laurent series of [tex]\( f(z) \)[/tex] in the domain [tex]\( 0 < |z| < \infty \)[/tex] is:
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{-4n} \][/tex]
### (a) Laurent Series Expansion of [tex]\( f(z) = \frac{1}{z^2 + 2z} \)[/tex] for [tex]\( 1 < |z-1| < 3 \)[/tex]
First, let's rewrite the function to make the singularities more apparent:
[tex]\[ f(z) = \frac{1}{z(z+2)} \][/tex]
This function has poles at [tex]\( z = 0 \)[/tex] and [tex]\( z = -2 \)[/tex]. To find the Laurent series for [tex]\( 1 < |z - 1| < 3 \)[/tex], we need to express [tex]\( f(z) \)[/tex] in a form that separates the singularities inside and outside the annulus.
We use partial fraction decomposition to rewrite [tex]\( f(z) \)[/tex]:
[tex]\[ f(z) = \frac{1}{z(z+2)} = \frac{A}{z} + \frac{B}{z+2} \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z+2) + Bz \][/tex]
Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = 2A \implies A = \frac{1}{2} \][/tex]
Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = -2B \implies B = -\frac{1}{2} \][/tex]
So the decomposition is:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{2(z+2)} \][/tex]
Now, in the given annulus [tex]\( 1 < |z-1| < 3 \)[/tex], we need to work with the term [tex]\( \frac{1}{2(z+2)} \)[/tex] by shifting the origin to [tex]\( z = 1 \)[/tex] using [tex]\( z+2 = (z-1) + 3 \)[/tex]:
[tex]\[ \frac{1}{z+2} = \frac{1}{(z-1)+3} = \frac{1}{3\left(1 + \frac{z-1}{3}\right)} \][/tex]
Using the geometric series expansion [tex]\( \frac{1}{1+w} = \sum_{n=0}^{\infty} (-w)^n \)[/tex], where [tex]\( w = \frac{z-1}{3} \)[/tex]:
[tex]\[ \frac{1}{z+2} = \frac{1}{3} \sum_{n=0}^{\infty} \left( -\frac{z-1}{3} \right)^n = \frac{1}{3} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \][/tex]
Combining the partial fractions:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{2} \left( \frac{1}{3} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \right) \][/tex]
Simplifying:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{6} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \][/tex]
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{6} \sum_{n=0}^{\infty} \left( -\frac{z-1}{3} \right)^n \][/tex]
### (b) Laurent Series Expansion of [tex]\( f(z) = z^2 \sin \left( \frac{1}{z^2} \right) \)[/tex] in the domain [tex]\( 0<|z|<\infty \)[/tex]
Firstly, recall the Maclaurin series expansion for [tex]\( \sin x \)[/tex]:
[tex]\[ \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \][/tex]
Substitute [tex]\( x = \frac{1}{z^2} \)[/tex]:
[tex]\[ \sin \left( \frac{1}{z^2} \right) = \sum_{n=0}^{\infty} \frac{(-1)^n \left( \frac{1}{z^2} \right)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{4n+2}} \][/tex]
Now, multiply by [tex]\( z^2 \)[/tex]:
[tex]\[ f(z) = z^2 \sin \left( \frac{1}{z^2} \right) = z^2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{4n+2}} \][/tex]
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{z^2}{z^{4n+2}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2-4n-2} \][/tex]
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{-4n} \][/tex]
Therefore, the Laurent series of [tex]\( f(z) \)[/tex] in the domain [tex]\( 0 < |z| < \infty \)[/tex] is:
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{-4n} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.