IDNLearn.com provides a collaborative environment for finding and sharing answers. Our community is ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To determine the least number [tex]\( n \)[/tex] such that the [tex]\( n \)[/tex]th term of the geometric sequence is greater than the corresponding term in the arithmetic sequence, we first need to define both sequences clearly.
Arithmetic Sequence:
- First term [tex]\( a \)[/tex] is 600.
- Common difference [tex]\( d \)[/tex] is 400.
- General formula for the [tex]\( n \)[/tex]th term: [tex]\( a_n = a + (n-1)d \)[/tex].
Geometric Sequence:
- First term [tex]\( g \)[/tex] is 2.
- Common ratio [tex]\( r \)[/tex] is 2.
- General formula for the [tex]\( n \)[/tex]th term: [tex]\( g_n = g \times r^{n-1} \)[/tex].
We need to find the smallest [tex]\( n \)[/tex] such that [tex]\( g_n > a_n \)[/tex], i.e.,
[tex]\[ 2 \times 2^{n-1} > 600 + (n-1) \times 400. \][/tex]
Let's substitute the specific values for each [tex]\( n \)[/tex] to find the point where the geometric sequence term exceeds the arithmetic sequence term:
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{0} = 2, \][/tex]
[tex]\[ a_n = 600 + (1-1) \times 400 = 600. \][/tex]
Clearly, [tex]\( 2 < 600 \)[/tex].
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{1} = 4, \][/tex]
[tex]\[ a_n = 600 + (2-1) \times 400 = 1000. \][/tex]
Clearly, [tex]\( 4 < 1000 \)[/tex].
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{2} = 8, \][/tex]
[tex]\[ a_n = 600 + (3-1) \times 400 = 1400. \][/tex]
Clearly, [tex]\( 8 < 1400 \)[/tex].
4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{3} = 16, \][/tex]
[tex]\[ a_n = 600 + (4-1) \times 400 = 1800. \][/tex]
Clearly, [tex]\( 16 < 1800 \)[/tex].
5. For [tex]\( n = 5 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{4} = 32, \][/tex]
[tex]\[ a_n = 600 + (5-1) \times 400 = 2200. \][/tex]
Clearly, [tex]\( 32 < 2200 \)[/tex].
6. For [tex]\( n = 6 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{5} = 64, \][/tex]
[tex]\[ a_n = 600 + (6-1) \times 400 = 2600. \][/tex]
Clearly, [tex]\( 64 < 2600 \)[/tex].
7. For [tex]\( n = 7 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{6} = 128, \][/tex]
[tex]\[ a_n = 600 + (7-1) \times 400 = 3000. \][/tex]
Clearly, [tex]\( 128 < 3000 \)[/tex].
8. For [tex]\( n = 8 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{7} = 256, \][/tex]
[tex]\[ a_n = 600 + (8-1) \times 400 = 3400. \][/tex]
Clearly, [tex]\( 256 < 3400 \)[/tex].
9. For [tex]\( n = 9 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{8} = 512, \][/tex]
[tex]\[ a_n = 600 + (9-1) \times 400 = 3800. \][/tex]
Clearly, [tex]\( 512 < 3800 \)[/tex].
10. For [tex]\( n = 10 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{9} = 1024, \][/tex]
[tex]\[ a_n = 600 + (10-1) \times 400 = 4200. \][/tex]
Clearly, [tex]\( 1024 < 4200 \)[/tex].
11. For [tex]\( n = 11 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{10} = 2048, \][/tex]
[tex]\[ a_n = 600 + (11-1) \times 400 = 4600. \][/tex]
Clearly, [tex]\( 2048 < 4600 \)[/tex].
12. For [tex]\( n = 12 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{11} = 4096, \][/tex]
[tex]\[ a_n = 600 + (12-1) \times 400 = 5000. \][/tex]
Clearly, [tex]\( 4096 < 5000 \)[/tex].
13. For [tex]\( n = 13 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{12} = 8192, \][/tex]
[tex]\[ a_n = 600 + (13-1) \times 400 = 5400. \][/tex]
Now, [tex]\( 8192 > 5400 \)[/tex].
Therefore, the least number [tex]\( n \)[/tex] such that the [tex]\( n \)[/tex]th term of the geometric sequence is greater than the corresponding term in the arithmetic sequence is [tex]\( n = 13 \)[/tex].
Arithmetic Sequence:
- First term [tex]\( a \)[/tex] is 600.
- Common difference [tex]\( d \)[/tex] is 400.
- General formula for the [tex]\( n \)[/tex]th term: [tex]\( a_n = a + (n-1)d \)[/tex].
Geometric Sequence:
- First term [tex]\( g \)[/tex] is 2.
- Common ratio [tex]\( r \)[/tex] is 2.
- General formula for the [tex]\( n \)[/tex]th term: [tex]\( g_n = g \times r^{n-1} \)[/tex].
We need to find the smallest [tex]\( n \)[/tex] such that [tex]\( g_n > a_n \)[/tex], i.e.,
[tex]\[ 2 \times 2^{n-1} > 600 + (n-1) \times 400. \][/tex]
Let's substitute the specific values for each [tex]\( n \)[/tex] to find the point where the geometric sequence term exceeds the arithmetic sequence term:
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{0} = 2, \][/tex]
[tex]\[ a_n = 600 + (1-1) \times 400 = 600. \][/tex]
Clearly, [tex]\( 2 < 600 \)[/tex].
2. For [tex]\( n = 2 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{1} = 4, \][/tex]
[tex]\[ a_n = 600 + (2-1) \times 400 = 1000. \][/tex]
Clearly, [tex]\( 4 < 1000 \)[/tex].
3. For [tex]\( n = 3 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{2} = 8, \][/tex]
[tex]\[ a_n = 600 + (3-1) \times 400 = 1400. \][/tex]
Clearly, [tex]\( 8 < 1400 \)[/tex].
4. For [tex]\( n = 4 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{3} = 16, \][/tex]
[tex]\[ a_n = 600 + (4-1) \times 400 = 1800. \][/tex]
Clearly, [tex]\( 16 < 1800 \)[/tex].
5. For [tex]\( n = 5 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{4} = 32, \][/tex]
[tex]\[ a_n = 600 + (5-1) \times 400 = 2200. \][/tex]
Clearly, [tex]\( 32 < 2200 \)[/tex].
6. For [tex]\( n = 6 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{5} = 64, \][/tex]
[tex]\[ a_n = 600 + (6-1) \times 400 = 2600. \][/tex]
Clearly, [tex]\( 64 < 2600 \)[/tex].
7. For [tex]\( n = 7 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{6} = 128, \][/tex]
[tex]\[ a_n = 600 + (7-1) \times 400 = 3000. \][/tex]
Clearly, [tex]\( 128 < 3000 \)[/tex].
8. For [tex]\( n = 8 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{7} = 256, \][/tex]
[tex]\[ a_n = 600 + (8-1) \times 400 = 3400. \][/tex]
Clearly, [tex]\( 256 < 3400 \)[/tex].
9. For [tex]\( n = 9 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{8} = 512, \][/tex]
[tex]\[ a_n = 600 + (9-1) \times 400 = 3800. \][/tex]
Clearly, [tex]\( 512 < 3800 \)[/tex].
10. For [tex]\( n = 10 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{9} = 1024, \][/tex]
[tex]\[ a_n = 600 + (10-1) \times 400 = 4200. \][/tex]
Clearly, [tex]\( 1024 < 4200 \)[/tex].
11. For [tex]\( n = 11 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{10} = 2048, \][/tex]
[tex]\[ a_n = 600 + (11-1) \times 400 = 4600. \][/tex]
Clearly, [tex]\( 2048 < 4600 \)[/tex].
12. For [tex]\( n = 12 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{11} = 4096, \][/tex]
[tex]\[ a_n = 600 + (12-1) \times 400 = 5000. \][/tex]
Clearly, [tex]\( 4096 < 5000 \)[/tex].
13. For [tex]\( n = 13 \)[/tex]:
[tex]\[ g_n = 2 \times 2^{12} = 8192, \][/tex]
[tex]\[ a_n = 600 + (13-1) \times 400 = 5400. \][/tex]
Now, [tex]\( 8192 > 5400 \)[/tex].
Therefore, the least number [tex]\( n \)[/tex] such that the [tex]\( n \)[/tex]th term of the geometric sequence is greater than the corresponding term in the arithmetic sequence is [tex]\( n = 13 \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.