IDNLearn.com: Where your questions meet expert answers and community support. Our experts provide timely and precise responses to help you understand and solve any issue you face.
Sagot :
To calculate the relative atomic mass (A) of element [tex]\( R \)[/tex], we need to use the mass numbers and their respective percentage abundances. The formula to calculate the relative atomic mass is:
[tex]\[ A = \left( m_1 \times \frac{a_1}{100} \right) + \left( m_2 \times \frac{a_2}{100} \right) \][/tex]
where:
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the mass numbers of the isotopes.
- [tex]\( a_1 \)[/tex] and [tex]\( a_2 \)[/tex] are the percentage abundances of the isotopes.
From the given data in Table 1:
- Mass number of isotope 1 ([tex]\( m_1 \)[/tex]) is 6, with a percentage abundance ([tex]\( a_1 \)[/tex]) of 7.6%.
- Mass number of isotope 2 ([tex]\( m_2 \)[/tex]) is 7, with a percentage abundance ([tex]\( a_2 \)[/tex]) of 92.4%.
Now, let's substitute these values into the formula:
[tex]\[ A = \left( 6 \times \frac{7.6}{100} \right) + \left( 7 \times \frac{92.4}{100} \right) \][/tex]
First, calculate the individual contributions of each isotope to the relative atomic mass:
[tex]\[ 6 \times \frac{7.6}{100} = 6 \times 0.076 = 0.456 \][/tex]
[tex]\[ 7 \times \frac{92.4}{100} = 7 \times 0.924 = 6.468 \][/tex]
Next, add these contributions together:
[tex]\[ A = 0.456 + 6.468 = 6.924 \][/tex]
Finally, we round the result to 1 decimal place:
[tex]\[ A \approx 6.9 \][/tex]
Therefore, the relative atomic mass of element [tex]\( R \)[/tex] to 1 decimal place is:
[tex]\[ \boxed{6.9} \][/tex]
[tex]\[ A = \left( m_1 \times \frac{a_1}{100} \right) + \left( m_2 \times \frac{a_2}{100} \right) \][/tex]
where:
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the mass numbers of the isotopes.
- [tex]\( a_1 \)[/tex] and [tex]\( a_2 \)[/tex] are the percentage abundances of the isotopes.
From the given data in Table 1:
- Mass number of isotope 1 ([tex]\( m_1 \)[/tex]) is 6, with a percentage abundance ([tex]\( a_1 \)[/tex]) of 7.6%.
- Mass number of isotope 2 ([tex]\( m_2 \)[/tex]) is 7, with a percentage abundance ([tex]\( a_2 \)[/tex]) of 92.4%.
Now, let's substitute these values into the formula:
[tex]\[ A = \left( 6 \times \frac{7.6}{100} \right) + \left( 7 \times \frac{92.4}{100} \right) \][/tex]
First, calculate the individual contributions of each isotope to the relative atomic mass:
[tex]\[ 6 \times \frac{7.6}{100} = 6 \times 0.076 = 0.456 \][/tex]
[tex]\[ 7 \times \frac{92.4}{100} = 7 \times 0.924 = 6.468 \][/tex]
Next, add these contributions together:
[tex]\[ A = 0.456 + 6.468 = 6.924 \][/tex]
Finally, we round the result to 1 decimal place:
[tex]\[ A \approx 6.9 \][/tex]
Therefore, the relative atomic mass of element [tex]\( R \)[/tex] to 1 decimal place is:
[tex]\[ \boxed{6.9} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.