Find answers to your questions and expand your knowledge with IDNLearn.com. Explore a wide array of topics and find reliable answers from our experienced community members.
Sagot :
To determine which of the given statements is true for the functions [tex]\( f(x) = \log_2(2x) \)[/tex] and [tex]\( g(x) = 2^x - 3 \)[/tex], let's analyze the properties of these functions:
1. Behavior on the Interval [tex]\((-∞, 1)\)[/tex]:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The derivative is [tex]\( f'(x) = \frac{1}{x\ln(2)} \)[/tex].
- Evaluating the derivative at various points indicates the nature of increase or decrease.
- As [tex]\( x \to -∞ \)[/tex], [tex]\( f'(x) \)[/tex] approaches [tex]\( 0 \)[/tex].
- At [tex]\( x = 1 \)[/tex], [tex]\( f'(1) = \frac{1}{\ln(2)} \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The derivative is [tex]\( g'(x) = 2^x \ln(2) \)[/tex].
- As [tex]\( x \to -∞ \)[/tex], [tex]\( g'(x) \)[/tex] approaches [tex]\( 0 \)[/tex].
- At [tex]\( x = 1 \)[/tex], [tex]\( g'(1) = 2 \ln(2) \)[/tex].
Since [tex]\( f'(x) > 0 \)[/tex] and [tex]\( g'(x) > 0 \)[/tex] for these values, neither [tex]\( f(x) \)[/tex] nor [tex]\( g(x) \)[/tex] decreases on the interval [tex]\((-∞, 1)\)[/tex].
2. Range:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The range is [tex]\( (-∞, ∞) \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The range is [tex]\( (-3, ∞) \)[/tex].
Since the ranges are different, both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] do not have the same range of [tex]\( (-∞, 0] \)[/tex].
3. x-intercepts:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- Set [tex]\( \log_2(2x) = 0 \)[/tex], solving for [tex]\( x \)[/tex] gives [tex]\( x = \frac{1}{2} \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- Set [tex]\( 2^x - 3 = 0 \)[/tex], solving for [tex]\( x \)[/tex] gives [tex]\( x = \log_2(3) \)[/tex].
The [tex]\( x \)[/tex]-intercepts do not coincide, so both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] do not have the same [tex]\( x \)[/tex]-intercept of [tex]\((0,0)\)[/tex].
4. Behavior on the Interval [tex]\((0, ∞)\)[/tex]:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The derivative is [tex]\( f'(x) = \frac{1}{x \ln(2)} \)[/tex], which is positive for [tex]\( x > 0 \)[/tex].
- As [tex]\( x \to ∞ \)[/tex], [tex]\( f'(x) \)[/tex] approaches [tex]\( 0 \)[/tex] from the positive side.
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The derivative is [tex]\( g'(x) = 2^x \ln(2) \)[/tex], which is positive for all [tex]\( x \)[/tex].
- As [tex]\( x \to ∞ \)[/tex], [tex]\( g'(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
Since [tex]\( f'(x) > 0 \)[/tex] and [tex]\( g'(x) > 0 \)[/tex] for [tex]\( x \in (0, ∞) \)[/tex], both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] increase on the interval [tex]\( (0, ∞) \)[/tex].
The true statement is: Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] increase on the interval [tex]\( (0, \infty) \)[/tex].
1. Behavior on the Interval [tex]\((-∞, 1)\)[/tex]:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The derivative is [tex]\( f'(x) = \frac{1}{x\ln(2)} \)[/tex].
- Evaluating the derivative at various points indicates the nature of increase or decrease.
- As [tex]\( x \to -∞ \)[/tex], [tex]\( f'(x) \)[/tex] approaches [tex]\( 0 \)[/tex].
- At [tex]\( x = 1 \)[/tex], [tex]\( f'(1) = \frac{1}{\ln(2)} \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The derivative is [tex]\( g'(x) = 2^x \ln(2) \)[/tex].
- As [tex]\( x \to -∞ \)[/tex], [tex]\( g'(x) \)[/tex] approaches [tex]\( 0 \)[/tex].
- At [tex]\( x = 1 \)[/tex], [tex]\( g'(1) = 2 \ln(2) \)[/tex].
Since [tex]\( f'(x) > 0 \)[/tex] and [tex]\( g'(x) > 0 \)[/tex] for these values, neither [tex]\( f(x) \)[/tex] nor [tex]\( g(x) \)[/tex] decreases on the interval [tex]\((-∞, 1)\)[/tex].
2. Range:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The range is [tex]\( (-∞, ∞) \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The range is [tex]\( (-3, ∞) \)[/tex].
Since the ranges are different, both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] do not have the same range of [tex]\( (-∞, 0] \)[/tex].
3. x-intercepts:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- Set [tex]\( \log_2(2x) = 0 \)[/tex], solving for [tex]\( x \)[/tex] gives [tex]\( x = \frac{1}{2} \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- Set [tex]\( 2^x - 3 = 0 \)[/tex], solving for [tex]\( x \)[/tex] gives [tex]\( x = \log_2(3) \)[/tex].
The [tex]\( x \)[/tex]-intercepts do not coincide, so both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] do not have the same [tex]\( x \)[/tex]-intercept of [tex]\((0,0)\)[/tex].
4. Behavior on the Interval [tex]\((0, ∞)\)[/tex]:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The derivative is [tex]\( f'(x) = \frac{1}{x \ln(2)} \)[/tex], which is positive for [tex]\( x > 0 \)[/tex].
- As [tex]\( x \to ∞ \)[/tex], [tex]\( f'(x) \)[/tex] approaches [tex]\( 0 \)[/tex] from the positive side.
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The derivative is [tex]\( g'(x) = 2^x \ln(2) \)[/tex], which is positive for all [tex]\( x \)[/tex].
- As [tex]\( x \to ∞ \)[/tex], [tex]\( g'(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
Since [tex]\( f'(x) > 0 \)[/tex] and [tex]\( g'(x) > 0 \)[/tex] for [tex]\( x \in (0, ∞) \)[/tex], both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] increase on the interval [tex]\( (0, ∞) \)[/tex].
The true statement is: Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] increase on the interval [tex]\( (0, \infty) \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Find reliable answers at IDNLearn.com. Thanks for stopping by, and come back for more trustworthy solutions.