Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.

What is the solution to [tex]3 x^2 + 5 x \ \textgreater \ -2[/tex]?

A. [tex]x \ \textless \ -1[/tex] or [tex]x \ \textgreater \ -\frac{2}{3}[/tex]
B. [tex]x \geq -\frac{2}{3}[/tex] or [tex]x \ \textless \ 1[/tex]
C. [tex]-\frac{2}{3} \leq x \leq 1[/tex]
D. [tex]-\frac{2}{3} \ \textgreater \ x \ \textgreater \ -1[/tex]


Sagot :

To solve the inequality [tex]\(3 x^2 + 5 x > -2\)[/tex], we can follow these steps:

1. Rewrite the inequality:
[tex]\[ 3 x^2 + 5 x + 2 > 0 \][/tex]
This inequality is now a quadratic inequality.

2. Find the roots of the quadratic equation [tex]\(3 x^2 + 5 x + 2 = 0\)[/tex]:
To do this, we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 3\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = 2\)[/tex].

First, calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac = 5^2 - 4 \cdot 3 \cdot 2 = 25 - 24 = 1 \][/tex]

The discriminant is 1, which is positive, indicating two real and distinct roots.

Hence, the roots are:
[tex]\[ x = \frac{-5 \pm \sqrt{1}}{2 \cdot 3} = \frac{-5 \pm 1}{6} \][/tex]
Thus, the roots are:
[tex]\[ x = \frac{-5 + 1}{6} = \frac{-4}{6} = -\frac{2}{3} \][/tex]
and
[tex]\[ x = \frac{-5 - 1}{6} = \frac{-6}{6} = -1 \][/tex]

3. Determine the sign of [tex]\(3 x^2 + 5 x + 2\)[/tex] in the intervals determined by the roots:

The roots [tex]\(-1\)[/tex] and [tex]\(-\frac{2}{3}\)[/tex] divide the number line into three intervals: [tex]\((-\infty, -1)\)[/tex], [tex]\((-1, -\frac{2}{3})\)[/tex], and [tex]\((-\frac{2}{3}, \infty)\)[/tex].

- For [tex]\(x \in (-\infty, -1)\)[/tex]: Choose [tex]\(x = -2\)[/tex]:
[tex]\[ 3(-2)^2 + 5(-2) + 2 = 12 - 10 + 2 = 4 > 0 \][/tex]
- For [tex]\(x \in (-1, -\frac{2}{3})\)[/tex]: Choose [tex]\(x = -\frac{3}{4}\)[/tex]:
[tex]\[ 3\left(-\frac{3}{4}\right)^2 + 5\left(-\frac{3}{4}\right) + 2 = 3 \cdot \frac{9}{16} - \frac{15}{4} + 2 = \frac{27}{16} - \frac{60}{16} + \frac{32}{16} = -\frac{1}{16} < 0 \][/tex]
- For [tex]\(x \in (-\frac{2}{3}, \infty)\)[/tex]: Choose [tex]\(x = 0\)[/tex]:
[tex]\[ 3(0)^2 + 5(0) + 2 = 2 > 0 \][/tex]

4. Combine the intervals where the quadratic expression is positive:

From the above analysis:
- [tex]\(3 x^2 + 5 x + 2 > 0\)[/tex] in the intervals [tex]\((-\infty, -1)\)[/tex] and [tex]\((-\frac{2}{3}, \infty)\)[/tex].

5. Write down the solution in interval notation:

[tex]\[ x \in (-\infty, -1) \cup (-\frac{2}{3}, \infty) \][/tex]

6. Identify the corresponding option:

The correct solution matches the first option: [tex]\(x <-1\)[/tex] or [tex]\(x > -\frac{2}{3}\)[/tex].

Thus, the solution to the inequality [tex]\(3 x^2 + 5 x > -2\)[/tex] is:
[tex]\[ x < -1 \text{ or } x > -\frac{2}{3} \][/tex]