Discover a wealth of information and get your questions answered on IDNLearn.com. Discover detailed answers to your questions with our extensive database of expert knowledge.
Sagot :
Sure! Let's solve the problem step by step using the Ideal Gas Law, [tex]\( PV = nRT \)[/tex], where:
- [tex]\( P \)[/tex] is the pressure of the gas.
- [tex]\( V \)[/tex] is the volume of the gas.
- [tex]\( n \)[/tex] is the amount of gas (in moles).
- [tex]\( R \)[/tex] is the ideal gas constant.
- [tex]\( T \)[/tex] is the temperature of the gas in Kelvin.
Given data:
- [tex]\( n = 0.80 \, \text{mol} \)[/tex]
- [tex]\( V = 275 \, \text{mL} \)[/tex] which needs to be converted to [tex]\( \text{L} \)[/tex]
- [tex]\( P = 175 \, \text{kPa} \)[/tex]
- [tex]\( R = 8.814 \, \frac{ \text{L} \cdot \text{kPa} }{ \text{mol} \cdot \text{K} } \)[/tex]
First, convert the volume from milliliters (mL) to liters (L):
[tex]\[ 275 \, \text{mL} = 275 \times 10^{-3} \, \text{L} = 0.275 \, \text{L} \][/tex]
Now substitute all known values into the Ideal Gas Law equation, [tex]\( PV = nRT \)[/tex], and solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{PV}{nR} \][/tex]
Substitute in the values:
[tex]\[ T = \frac{(175 \, \text{kPa}) (0.275 \, \text{L})}{(0.80 \, \text{mol}) (8.814 \, \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}})} \][/tex]
After performing all operations, you get the result:
[tex]\[ T \approx 6.825 \, \text{K} \][/tex]
Given the provided options:
- [tex]\( 4.6 \, \text{K} \)[/tex]
- [tex]\( 7.2 \, \text{K} \)[/tex]
- [tex]\( 61 \, \text{K} \)[/tex]
- [tex]\( 96 \, \text{K} \)[/tex]
The closest value to our calculated temperature of [tex]\( 6.825 \, \text{K} \)[/tex] is not perfectly matching any of these options exactly but appears closest to:
[tex]\[ 7.2 \, \text{K} \][/tex]
So, the temperature of the gas is approximately [tex]\( 7.2 \, \text{K} \)[/tex].
- [tex]\( P \)[/tex] is the pressure of the gas.
- [tex]\( V \)[/tex] is the volume of the gas.
- [tex]\( n \)[/tex] is the amount of gas (in moles).
- [tex]\( R \)[/tex] is the ideal gas constant.
- [tex]\( T \)[/tex] is the temperature of the gas in Kelvin.
Given data:
- [tex]\( n = 0.80 \, \text{mol} \)[/tex]
- [tex]\( V = 275 \, \text{mL} \)[/tex] which needs to be converted to [tex]\( \text{L} \)[/tex]
- [tex]\( P = 175 \, \text{kPa} \)[/tex]
- [tex]\( R = 8.814 \, \frac{ \text{L} \cdot \text{kPa} }{ \text{mol} \cdot \text{K} } \)[/tex]
First, convert the volume from milliliters (mL) to liters (L):
[tex]\[ 275 \, \text{mL} = 275 \times 10^{-3} \, \text{L} = 0.275 \, \text{L} \][/tex]
Now substitute all known values into the Ideal Gas Law equation, [tex]\( PV = nRT \)[/tex], and solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{PV}{nR} \][/tex]
Substitute in the values:
[tex]\[ T = \frac{(175 \, \text{kPa}) (0.275 \, \text{L})}{(0.80 \, \text{mol}) (8.814 \, \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}})} \][/tex]
After performing all operations, you get the result:
[tex]\[ T \approx 6.825 \, \text{K} \][/tex]
Given the provided options:
- [tex]\( 4.6 \, \text{K} \)[/tex]
- [tex]\( 7.2 \, \text{K} \)[/tex]
- [tex]\( 61 \, \text{K} \)[/tex]
- [tex]\( 96 \, \text{K} \)[/tex]
The closest value to our calculated temperature of [tex]\( 6.825 \, \text{K} \)[/tex] is not perfectly matching any of these options exactly but appears closest to:
[tex]\[ 7.2 \, \text{K} \][/tex]
So, the temperature of the gas is approximately [tex]\( 7.2 \, \text{K} \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.