Join the IDNLearn.com community and get your questions answered by experts. Get comprehensive answers to all your questions from our network of experienced experts.
Sagot :
To determine the equilibrium constant [tex]\( K_{eq} \)[/tex] for the reaction:
[tex]\[ 2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g) \][/tex]
we follow these steps:
1. Calculate the concentrations of each species in the 1.00-liter vessel.
- The concentration of [tex]\( H_2 \)[/tex]:
[tex]\[ [H_2] = \frac{\text{moles of } H_2}{\text{volume of vessel}} = \frac{0.50 \, \text{moles}}{1.00 \, \text{liter}} = 0.50 \, \text{M} \][/tex]
- The concentration of [tex]\( S_2 \)[/tex]:
[tex]\[ [S_2] = \frac{\text{moles of } S_2}{\text{volume of vessel}} = \frac{0.020 \, \text{moles}}{1.00 \, \text{liter}} = 0.020 \, \text{M} \][/tex]
- The concentration of [tex]\( H_2S \)[/tex]:
[tex]\[ [H_2S] = \frac{\text{moles of } H_2S}{\text{volume of vessel}} = \frac{68.5 \, \text{moles}}{1.00 \, \text{liter}} = 68.5 \, \text{M} \][/tex]
2. Write the equilibrium expression for the reaction:
[tex]\[ K_{eq} = \frac{[H_2S]^2}{[H_2]^2 \cdot [S_2]} \][/tex]
3. Substitute the equilibrium concentrations into the equilibrium expression:
- [tex]\([H_2] = 0.50 \, \text{M}\)[/tex]
- [tex]\([S_2] = 0.020 \, \text{M}\)[/tex]
- [tex]\([H_2S] = 68.5 \, \text{M}\)[/tex]
Therefore, the equilibrium constant is:
[tex]\[ K_{eq} = \frac{(68.5)^2}{(0.50)^2 \cdot 0.020} \][/tex]
4. Calculate the numerical value:
[tex]\[ K_{eq} = \frac{(68.5 \times 68.5)}{(0.50 \times 0.50) \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.25 \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.005} \][/tex]
[tex]\[ K_{eq} = 938450.0 \][/tex]
So, the equilibrium constant [tex]\( K_{eq} \)[/tex] for this reaction system is [tex]\( 9.4 \times 10^5 \)[/tex].
Thus, the correct option is:
[tex]\[ K = 9.4 \times 10^5 \][/tex]
[tex]\[ 2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g) \][/tex]
we follow these steps:
1. Calculate the concentrations of each species in the 1.00-liter vessel.
- The concentration of [tex]\( H_2 \)[/tex]:
[tex]\[ [H_2] = \frac{\text{moles of } H_2}{\text{volume of vessel}} = \frac{0.50 \, \text{moles}}{1.00 \, \text{liter}} = 0.50 \, \text{M} \][/tex]
- The concentration of [tex]\( S_2 \)[/tex]:
[tex]\[ [S_2] = \frac{\text{moles of } S_2}{\text{volume of vessel}} = \frac{0.020 \, \text{moles}}{1.00 \, \text{liter}} = 0.020 \, \text{M} \][/tex]
- The concentration of [tex]\( H_2S \)[/tex]:
[tex]\[ [H_2S] = \frac{\text{moles of } H_2S}{\text{volume of vessel}} = \frac{68.5 \, \text{moles}}{1.00 \, \text{liter}} = 68.5 \, \text{M} \][/tex]
2. Write the equilibrium expression for the reaction:
[tex]\[ K_{eq} = \frac{[H_2S]^2}{[H_2]^2 \cdot [S_2]} \][/tex]
3. Substitute the equilibrium concentrations into the equilibrium expression:
- [tex]\([H_2] = 0.50 \, \text{M}\)[/tex]
- [tex]\([S_2] = 0.020 \, \text{M}\)[/tex]
- [tex]\([H_2S] = 68.5 \, \text{M}\)[/tex]
Therefore, the equilibrium constant is:
[tex]\[ K_{eq} = \frac{(68.5)^2}{(0.50)^2 \cdot 0.020} \][/tex]
4. Calculate the numerical value:
[tex]\[ K_{eq} = \frac{(68.5 \times 68.5)}{(0.50 \times 0.50) \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.25 \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.005} \][/tex]
[tex]\[ K_{eq} = 938450.0 \][/tex]
So, the equilibrium constant [tex]\( K_{eq} \)[/tex] for this reaction system is [tex]\( 9.4 \times 10^5 \)[/tex].
Thus, the correct option is:
[tex]\[ K = 9.4 \times 10^5 \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.