Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To determine the equilibrium constant [tex]\( K_{eq} \)[/tex] for the reaction:
[tex]\[ 2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g) \][/tex]
we follow these steps:
1. Calculate the concentrations of each species in the 1.00-liter vessel.
- The concentration of [tex]\( H_2 \)[/tex]:
[tex]\[ [H_2] = \frac{\text{moles of } H_2}{\text{volume of vessel}} = \frac{0.50 \, \text{moles}}{1.00 \, \text{liter}} = 0.50 \, \text{M} \][/tex]
- The concentration of [tex]\( S_2 \)[/tex]:
[tex]\[ [S_2] = \frac{\text{moles of } S_2}{\text{volume of vessel}} = \frac{0.020 \, \text{moles}}{1.00 \, \text{liter}} = 0.020 \, \text{M} \][/tex]
- The concentration of [tex]\( H_2S \)[/tex]:
[tex]\[ [H_2S] = \frac{\text{moles of } H_2S}{\text{volume of vessel}} = \frac{68.5 \, \text{moles}}{1.00 \, \text{liter}} = 68.5 \, \text{M} \][/tex]
2. Write the equilibrium expression for the reaction:
[tex]\[ K_{eq} = \frac{[H_2S]^2}{[H_2]^2 \cdot [S_2]} \][/tex]
3. Substitute the equilibrium concentrations into the equilibrium expression:
- [tex]\([H_2] = 0.50 \, \text{M}\)[/tex]
- [tex]\([S_2] = 0.020 \, \text{M}\)[/tex]
- [tex]\([H_2S] = 68.5 \, \text{M}\)[/tex]
Therefore, the equilibrium constant is:
[tex]\[ K_{eq} = \frac{(68.5)^2}{(0.50)^2 \cdot 0.020} \][/tex]
4. Calculate the numerical value:
[tex]\[ K_{eq} = \frac{(68.5 \times 68.5)}{(0.50 \times 0.50) \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.25 \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.005} \][/tex]
[tex]\[ K_{eq} = 938450.0 \][/tex]
So, the equilibrium constant [tex]\( K_{eq} \)[/tex] for this reaction system is [tex]\( 9.4 \times 10^5 \)[/tex].
Thus, the correct option is:
[tex]\[ K = 9.4 \times 10^5 \][/tex]
[tex]\[ 2 H_2(g) + S_2(g) \rightleftharpoons 2 H_2S(g) \][/tex]
we follow these steps:
1. Calculate the concentrations of each species in the 1.00-liter vessel.
- The concentration of [tex]\( H_2 \)[/tex]:
[tex]\[ [H_2] = \frac{\text{moles of } H_2}{\text{volume of vessel}} = \frac{0.50 \, \text{moles}}{1.00 \, \text{liter}} = 0.50 \, \text{M} \][/tex]
- The concentration of [tex]\( S_2 \)[/tex]:
[tex]\[ [S_2] = \frac{\text{moles of } S_2}{\text{volume of vessel}} = \frac{0.020 \, \text{moles}}{1.00 \, \text{liter}} = 0.020 \, \text{M} \][/tex]
- The concentration of [tex]\( H_2S \)[/tex]:
[tex]\[ [H_2S] = \frac{\text{moles of } H_2S}{\text{volume of vessel}} = \frac{68.5 \, \text{moles}}{1.00 \, \text{liter}} = 68.5 \, \text{M} \][/tex]
2. Write the equilibrium expression for the reaction:
[tex]\[ K_{eq} = \frac{[H_2S]^2}{[H_2]^2 \cdot [S_2]} \][/tex]
3. Substitute the equilibrium concentrations into the equilibrium expression:
- [tex]\([H_2] = 0.50 \, \text{M}\)[/tex]
- [tex]\([S_2] = 0.020 \, \text{M}\)[/tex]
- [tex]\([H_2S] = 68.5 \, \text{M}\)[/tex]
Therefore, the equilibrium constant is:
[tex]\[ K_{eq} = \frac{(68.5)^2}{(0.50)^2 \cdot 0.020} \][/tex]
4. Calculate the numerical value:
[tex]\[ K_{eq} = \frac{(68.5 \times 68.5)}{(0.50 \times 0.50) \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.25 \times 0.020} \][/tex]
[tex]\[ K_{eq} = \frac{4692.25}{0.005} \][/tex]
[tex]\[ K_{eq} = 938450.0 \][/tex]
So, the equilibrium constant [tex]\( K_{eq} \)[/tex] for this reaction system is [tex]\( 9.4 \times 10^5 \)[/tex].
Thus, the correct option is:
[tex]\[ K = 9.4 \times 10^5 \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com is your source for precise answers. Thank you for visiting, and we look forward to helping you again soon.