Find answers to your questions faster and easier with IDNLearn.com. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
To find the radius [tex]\( r \)[/tex] of a circus tent composed of both a cone and a cylinder, given the volume [tex]\( V \)[/tex] and the heights [tex]\( h_1 \)[/tex] and [tex]\( h_2 \)[/tex] of the cone and the cylinder respectively, we start by examining the volume formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h_1 + \pi r^2 h_2 \][/tex]
Our goal is to isolate [tex]\( r \)[/tex] in terms of [tex]\( V \)[/tex], [tex]\( h_1 \)[/tex], and [tex]\( h_2 \)[/tex]. Here’s a step-by-step solution:
1. First, factor out the common term [tex]\( \pi r^2 \)[/tex] from the volume equation:
[tex]\[ V = \pi r^2 \left( \frac{1}{3} h_1 + h_2 \right) \][/tex]
2. Next, divide both sides of the equation by [tex]\( \pi \left( \frac{1}{3} h_1 + h_2 \right) \)[/tex] to isolate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{V}{\pi \left( \frac{1}{3} h_1 + h_2 \right)} \][/tex]
3. To further simplify, combine the terms inside the denominator:
[tex]\[ r^2 = \frac{V}{\pi \left( \frac{h_1}{3} + h_2 \right)} \][/tex]
4. Now solve for [tex]\( r \)[/tex] by taking the square root of both sides:
[tex]\[ r = \sqrt{\frac{V}{\pi \left( \frac{h_1}{3} + h_2 \right)}} \][/tex]
5. Simplify the expression slightly for clarity:
[tex]\[ r = \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
Therefore, the radius [tex]\( r \)[/tex] of the circus tent can be expressed in terms of the volume [tex]\( V \)[/tex], the height of the cone [tex]\( h_1 \)[/tex], and the height of the cylinder [tex]\( h_2 \)[/tex] as follows:
[tex]\[ r = \pm \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
This solution yields two possible values for [tex]\( r \)[/tex], one positive and one negative. Given that a radius cannot be negative in a real-world geometric context, the practical solution is:
[tex]\[ r = \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
Thus, this positive expression for [tex]\( r \)[/tex] provides the desired radius of the circus tent.
[tex]\[ V = \frac{1}{3} \pi r^2 h_1 + \pi r^2 h_2 \][/tex]
Our goal is to isolate [tex]\( r \)[/tex] in terms of [tex]\( V \)[/tex], [tex]\( h_1 \)[/tex], and [tex]\( h_2 \)[/tex]. Here’s a step-by-step solution:
1. First, factor out the common term [tex]\( \pi r^2 \)[/tex] from the volume equation:
[tex]\[ V = \pi r^2 \left( \frac{1}{3} h_1 + h_2 \right) \][/tex]
2. Next, divide both sides of the equation by [tex]\( \pi \left( \frac{1}{3} h_1 + h_2 \right) \)[/tex] to isolate [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = \frac{V}{\pi \left( \frac{1}{3} h_1 + h_2 \right)} \][/tex]
3. To further simplify, combine the terms inside the denominator:
[tex]\[ r^2 = \frac{V}{\pi \left( \frac{h_1}{3} + h_2 \right)} \][/tex]
4. Now solve for [tex]\( r \)[/tex] by taking the square root of both sides:
[tex]\[ r = \sqrt{\frac{V}{\pi \left( \frac{h_1}{3} + h_2 \right)}} \][/tex]
5. Simplify the expression slightly for clarity:
[tex]\[ r = \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
Therefore, the radius [tex]\( r \)[/tex] of the circus tent can be expressed in terms of the volume [tex]\( V \)[/tex], the height of the cone [tex]\( h_1 \)[/tex], and the height of the cylinder [tex]\( h_2 \)[/tex] as follows:
[tex]\[ r = \pm \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
This solution yields two possible values for [tex]\( r \)[/tex], one positive and one negative. Given that a radius cannot be negative in a real-world geometric context, the practical solution is:
[tex]\[ r = \sqrt{\frac{3V}{\pi \left( h_1 + 3h_2 \right)}} \][/tex]
Thus, this positive expression for [tex]\( r \)[/tex] provides the desired radius of the circus tent.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.