IDNLearn.com is the perfect place to get answers, share knowledge, and learn new things. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
To find the final velocity of the truck sliding down a frictionless hill, we will use principles from physics, particularly the concepts of kinematics and gravitational acceleration along an incline.
Here's how we can break down the problem step-by-step:
1. Identify the given parameters:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex]
- Initial velocity, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex]
- Distance along the slope, [tex]\( d = 22.0 \, \text{m} \)[/tex]
- Slope angle, [tex]\( \theta = 8.30^\circ \)[/tex]
2. Convert the slope angle to radians:
The slope angle in radians is:
[tex]\[ \theta_{\text{radians}} = \theta \times \frac{\pi}{180} \][/tex]
[tex]\[ \theta_{\text{radians}} = 8.30 \times \frac{\pi}{180} \approx 0.1448 \, \text{radians} \][/tex]
3. Calculate the gravitational acceleration component along the slope:
The gravitational force causes an acceleration down the slope, which is given by:
[tex]\[ a_{\parallel} = g \sin(\theta) \][/tex]
where [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]. So,
[tex]\[ a_{\parallel} = 9.81 \times \sin(0.1448) \approx 1.414 \, \text{m/s}^2 \][/tex]
4. Use the kinematic equation to find the final velocity:
The kinematic equation relating initial velocity [tex]\( v_i \)[/tex], final velocity [tex]\( v_f \)[/tex], acceleration [tex]\( a \)[/tex], and distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2a_{\parallel} d \][/tex]
Plug in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \times 1.414 \times 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.328 \][/tex]
[tex]\[ v_f^2 = 84.5121 \][/tex]
5. Solve for [tex]\( v_f \)[/tex]:
Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.5121} \approx 9.192 \, \text{m/s} \][/tex]
Therefore, the final velocity of the truck after sliding down the 22.0 meter frictionless hill is approximately:
[tex]\[ \boxed{9.19 \, \text{m/s}} \][/tex]
Here's how we can break down the problem step-by-step:
1. Identify the given parameters:
- Mass of the truck, [tex]\( m = 3220 \, \text{kg} \)[/tex]
- Initial velocity, [tex]\( v_i = 4.71 \, \text{m/s} \)[/tex]
- Distance along the slope, [tex]\( d = 22.0 \, \text{m} \)[/tex]
- Slope angle, [tex]\( \theta = 8.30^\circ \)[/tex]
2. Convert the slope angle to radians:
The slope angle in radians is:
[tex]\[ \theta_{\text{radians}} = \theta \times \frac{\pi}{180} \][/tex]
[tex]\[ \theta_{\text{radians}} = 8.30 \times \frac{\pi}{180} \approx 0.1448 \, \text{radians} \][/tex]
3. Calculate the gravitational acceleration component along the slope:
The gravitational force causes an acceleration down the slope, which is given by:
[tex]\[ a_{\parallel} = g \sin(\theta) \][/tex]
where [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]. So,
[tex]\[ a_{\parallel} = 9.81 \times \sin(0.1448) \approx 1.414 \, \text{m/s}^2 \][/tex]
4. Use the kinematic equation to find the final velocity:
The kinematic equation relating initial velocity [tex]\( v_i \)[/tex], final velocity [tex]\( v_f \)[/tex], acceleration [tex]\( a \)[/tex], and distance [tex]\( d \)[/tex] is:
[tex]\[ v_f^2 = v_i^2 + 2a_{\parallel} d \][/tex]
Plug in the known values:
[tex]\[ v_f^2 = (4.71)^2 + 2 \times 1.414 \times 22.0 \][/tex]
[tex]\[ v_f^2 = 22.1841 + 62.328 \][/tex]
[tex]\[ v_f^2 = 84.5121 \][/tex]
5. Solve for [tex]\( v_f \)[/tex]:
Take the square root of both sides to find the final velocity [tex]\( v_f \)[/tex]:
[tex]\[ v_f = \sqrt{84.5121} \approx 9.192 \, \text{m/s} \][/tex]
Therefore, the final velocity of the truck after sliding down the 22.0 meter frictionless hill is approximately:
[tex]\[ \boxed{9.19 \, \text{m/s}} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.