IDNLearn.com makes it easy to get reliable answers from experts and enthusiasts alike. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
Given that [tex]\(\tan x = -\frac{8}{15}\)[/tex] and [tex]\(x\)[/tex] terminates in quadrant II, we will find [tex]\(\sin 2x\)[/tex], [tex]\(\cos 2x\)[/tex], and [tex]\(\tan 2x\)[/tex].
First, we need to determine the values of [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] based on the tangent value.
### Finding [tex]\(\cos x\)[/tex] and [tex]\(\sin x\)[/tex]:
Using the identity:
[tex]\[ 1 + \tan^2 x = \sec^2 x \][/tex]
Given [tex]\(\tan x = -\frac{8}{15}\)[/tex]:
[tex]\[ 1 + \left(-\frac{8}{15}\right)^2 = \sec^2 x \][/tex]
[tex]\[ 1 + \frac{64}{225} = \sec^2 x \][/tex]
[tex]\[ \sec^2 x = \frac{225}{225} + \frac{64}{225} = \frac{289}{225} \][/tex]
So, [tex]\(\sec x = \sqrt{\frac{289}{225}} = \frac{17}{15}\)[/tex].
Since [tex]\(\sec x = \frac{1}{\cos x}\)[/tex]:
[tex]\[ \cos x = \frac{15}{17} \][/tex]
However, since [tex]\(x\)[/tex] is in quadrant II, [tex]\(\cos x\)[/tex] is negative:
[tex]\[ \cos x = -\frac{15}{17} \][/tex]
Next, using the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Since we already have [tex]\(\cos x = -\frac{15}{17}\)[/tex]:
[tex]\[ \sin^2 x + \left(-\frac{15}{17}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 x + \frac{225}{289} = 1 \][/tex]
[tex]\[ \sin^2 x = 1 - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{289}{289} - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{64}{289} \][/tex]
Thus:
[tex]\[ \sin x = \sqrt{\frac{64}{289}} = \frac{8}{17} \][/tex]
Since [tex]\(x\)[/tex] terminates in quadrant II, [tex]\(\sin x\)[/tex] is positive:
[tex]\[ \sin x = \frac{8}{17} \][/tex]
### Finding [tex]\(\sin 2x\)[/tex] and [tex]\(\cos 2x\)[/tex]:
Using the double angle identities:
[tex]\[ \sin 2x = 2 \sin x \cos x \][/tex]
[tex]\[ \sin 2x = 2 \left(\frac{8}{17}\right) \left(-\frac{15}{17}\right) \][/tex]
[tex]\[ \sin 2x = 2 \left(-\frac{120}{289}\right) \][/tex]
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
Next, for [tex]\(\cos 2x\)[/tex]:
[tex]\[ \cos 2x = \cos^2 x - \sin^2 x \][/tex]
[tex]\[ \cos 2x = \left(-\frac{15}{17}\right)^2 - \left(\frac{8}{17}\right)^2 \][/tex]
[tex]\[ \cos 2x = \frac{225}{289} - \frac{64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{225 - 64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
### Finding [tex]\(\tan 2x\)[/tex]:
Finally, using the identity:
[tex]\[ \tan 2x = \frac{\sin 2x}{\cos 2x} \][/tex]
[tex]\[ \tan 2x = \frac{-\frac{240}{289}}{\frac{161}{289}} \][/tex]
[tex]\[ \tan 2x = \frac{-240}{161} \][/tex]
Rewriting it as a simplified fraction:
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Thus, the values are:
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
First, we need to determine the values of [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] based on the tangent value.
### Finding [tex]\(\cos x\)[/tex] and [tex]\(\sin x\)[/tex]:
Using the identity:
[tex]\[ 1 + \tan^2 x = \sec^2 x \][/tex]
Given [tex]\(\tan x = -\frac{8}{15}\)[/tex]:
[tex]\[ 1 + \left(-\frac{8}{15}\right)^2 = \sec^2 x \][/tex]
[tex]\[ 1 + \frac{64}{225} = \sec^2 x \][/tex]
[tex]\[ \sec^2 x = \frac{225}{225} + \frac{64}{225} = \frac{289}{225} \][/tex]
So, [tex]\(\sec x = \sqrt{\frac{289}{225}} = \frac{17}{15}\)[/tex].
Since [tex]\(\sec x = \frac{1}{\cos x}\)[/tex]:
[tex]\[ \cos x = \frac{15}{17} \][/tex]
However, since [tex]\(x\)[/tex] is in quadrant II, [tex]\(\cos x\)[/tex] is negative:
[tex]\[ \cos x = -\frac{15}{17} \][/tex]
Next, using the Pythagorean identity:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Since we already have [tex]\(\cos x = -\frac{15}{17}\)[/tex]:
[tex]\[ \sin^2 x + \left(-\frac{15}{17}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 x + \frac{225}{289} = 1 \][/tex]
[tex]\[ \sin^2 x = 1 - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{289}{289} - \frac{225}{289} \][/tex]
[tex]\[ \sin^2 x = \frac{64}{289} \][/tex]
Thus:
[tex]\[ \sin x = \sqrt{\frac{64}{289}} = \frac{8}{17} \][/tex]
Since [tex]\(x\)[/tex] terminates in quadrant II, [tex]\(\sin x\)[/tex] is positive:
[tex]\[ \sin x = \frac{8}{17} \][/tex]
### Finding [tex]\(\sin 2x\)[/tex] and [tex]\(\cos 2x\)[/tex]:
Using the double angle identities:
[tex]\[ \sin 2x = 2 \sin x \cos x \][/tex]
[tex]\[ \sin 2x = 2 \left(\frac{8}{17}\right) \left(-\frac{15}{17}\right) \][/tex]
[tex]\[ \sin 2x = 2 \left(-\frac{120}{289}\right) \][/tex]
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
Next, for [tex]\(\cos 2x\)[/tex]:
[tex]\[ \cos 2x = \cos^2 x - \sin^2 x \][/tex]
[tex]\[ \cos 2x = \left(-\frac{15}{17}\right)^2 - \left(\frac{8}{17}\right)^2 \][/tex]
[tex]\[ \cos 2x = \frac{225}{289} - \frac{64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{225 - 64}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
### Finding [tex]\(\tan 2x\)[/tex]:
Finally, using the identity:
[tex]\[ \tan 2x = \frac{\sin 2x}{\cos 2x} \][/tex]
[tex]\[ \tan 2x = \frac{-\frac{240}{289}}{\frac{161}{289}} \][/tex]
[tex]\[ \tan 2x = \frac{-240}{161} \][/tex]
Rewriting it as a simplified fraction:
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Thus, the values are:
[tex]\[ \sin 2x = -\frac{240}{289} \][/tex]
[tex]\[ \cos 2x = \frac{161}{289} \][/tex]
[tex]\[ \tan 2x = -\frac{240}{161} \][/tex]
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.