Connect with a knowledgeable community and get your questions answered on IDNLearn.com. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
To find the distance covered by the spaceship, we need to follow these steps:
1. Determine the acceleration:
We know the initial velocity ([tex]\(v_i\)[/tex]), final velocity ([tex]\(v_f\)[/tex]), and time ([tex]\(t\)[/tex]):
- [tex]\(v_i = 58.0\)[/tex] meters/second
- [tex]\(v_f = 153.0\)[/tex] meters/second
- [tex]\(t = 12.0\)[/tex] seconds
The formula for acceleration ([tex]\(a\)[/tex]) when the velocities and time are known is:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Substituting the given values:
[tex]\[ a = \frac{153.0 - 58.0}{12.0} \][/tex]
[tex]\[ a \approx 7.916666666666667 \, \text{meters/second}^2 \][/tex]
2. Calculate the distance:
The formula for distance ([tex]\(d\)[/tex]) covered under uniform acceleration is:
[tex]\[ d = v_i \cdot t + \frac{1}{2} a \cdot t^2 \][/tex]
Using the known values and the calculated acceleration:
[tex]\[ d = 58.0 \cdot 12.0 + \frac{1}{2} \cdot 7.916666666666667 \cdot (12.0)^2 \][/tex]
Breaking it into parts:
[tex]\[ \text{First term: } 58.0 \cdot 12.0 = 696.0 \, \text{meters} \][/tex]
[tex]\[ \text{Second term: } \frac{1}{2} \cdot 7.916666666666667 \cdot 144.0 = 570.0 \, \text{meters} \][/tex]
Adding these two parts together:
[tex]\[ d = 696.0 + 570.0 = 1266.0 \, \text{meters} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1.27 \times 10^3 \, \text{meters}} \][/tex]
Therefore, the correct choice is:
B. [tex]\(1.27 \times 10^3\)[/tex] meters
1. Determine the acceleration:
We know the initial velocity ([tex]\(v_i\)[/tex]), final velocity ([tex]\(v_f\)[/tex]), and time ([tex]\(t\)[/tex]):
- [tex]\(v_i = 58.0\)[/tex] meters/second
- [tex]\(v_f = 153.0\)[/tex] meters/second
- [tex]\(t = 12.0\)[/tex] seconds
The formula for acceleration ([tex]\(a\)[/tex]) when the velocities and time are known is:
[tex]\[ a = \frac{v_f - v_i}{t} \][/tex]
Substituting the given values:
[tex]\[ a = \frac{153.0 - 58.0}{12.0} \][/tex]
[tex]\[ a \approx 7.916666666666667 \, \text{meters/second}^2 \][/tex]
2. Calculate the distance:
The formula for distance ([tex]\(d\)[/tex]) covered under uniform acceleration is:
[tex]\[ d = v_i \cdot t + \frac{1}{2} a \cdot t^2 \][/tex]
Using the known values and the calculated acceleration:
[tex]\[ d = 58.0 \cdot 12.0 + \frac{1}{2} \cdot 7.916666666666667 \cdot (12.0)^2 \][/tex]
Breaking it into parts:
[tex]\[ \text{First term: } 58.0 \cdot 12.0 = 696.0 \, \text{meters} \][/tex]
[tex]\[ \text{Second term: } \frac{1}{2} \cdot 7.916666666666667 \cdot 144.0 = 570.0 \, \text{meters} \][/tex]
Adding these two parts together:
[tex]\[ d = 696.0 + 570.0 = 1266.0 \, \text{meters} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1.27 \times 10^3 \, \text{meters}} \][/tex]
Therefore, the correct choice is:
B. [tex]\(1.27 \times 10^3\)[/tex] meters
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.