Expand your knowledge base with the help of IDNLearn.com's extensive answer archive. Our experts provide timely, comprehensive responses to ensure you have the information you need.

What is the value of [tex]\Delta G[/tex] at [tex]300\, K[/tex] if [tex]\Delta H = 27\, kJ/mol[/tex] and [tex]\Delta S = 0.09\, kJ/(mol \cdot K)[/tex]?

A. [tex]\Delta G = 27\, kJ/mol[/tex]

B. [tex]\Delta G = 54\, kJ/mol[/tex]

C. [tex]\Delta G = 0\, kJ/mol[/tex]

D. [tex]\Delta G = -18\, kJ/mol[/tex]


Sagot :

To solve for the Gibbs free energy change ([tex]\(\Delta G\)[/tex]), we can use the Gibbs free energy equation:

[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]

where:
- [tex]\(\Delta H\)[/tex] is the change in enthalpy,
- [tex]\(T\)[/tex] is the temperature in Kelvin,
- [tex]\(\Delta S\)[/tex] is the change in entropy.

Given:
- [tex]\(\Delta H = 27 \, \text{kJ/mol}\)[/tex],
- [tex]\(\Delta S = 0.09 \, \text{kJ/(mol \cdot K)}\)[/tex],
- [tex]\(T = 300 \, \text{K}\)[/tex].

First, we substitute these values into the equation:

[tex]\[ \Delta G = 27 \, \text{kJ/mol} - 300 \, \text{K} \times 0.09 \, \text{kJ/(mol \cdot K)} \][/tex]

Next, perform the multiplication:

[tex]\[ 300 \, \text{K} \times 0.09 \, \text{kJ/(mol \cdot K)} = 27 \, \text{kJ/mol} \][/tex]

Then, subtract this result from the enthalpy change:

[tex]\[ \Delta G = 27 \, \text{kJ/mol} - 27 \, \text{kJ/mol} \][/tex]

[tex]\[ \Delta G = 0 \, \text{kJ/mol} \][/tex]

Thus, the value for [tex]\(\Delta G\)[/tex] at [tex]\(300 \, \text{K}\)[/tex] is:

C. [tex]\(\Delta G = 0 \, \text{kJ/mol}\)[/tex]