Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Ask your questions and receive comprehensive and trustworthy answers from our experienced community of professionals.

Evaluate the limit:

[tex]\[ \lim _{x \rightarrow 0} \frac{3x \sin 4x}{e^{x^2} - \cos 2x} \][/tex]


Sagot :

Sure! Let's evaluate the limit as \( x \) approaches 0 for the expression \(\frac{3x \sin(4x)}{e^{x^2} - \cos(2x)}\). Here is a step-by-step explanation:

1. Identify the function:
We need to find the limit of the function \( \frac{3x \sin(4x)}{e^{x^2} - \cos(2x)} \) as \( x \) approaches 0.

2. Substitute \( x \) with 0 and analyze:
Substitute \( x = 0 \) directly to see if it yields the indeterminate form \(\frac{0}{0}\):
- Numerator: \( 3 \cdot 0 \cdot \sin(4 \cdot 0) = 0 \)
- Denominator: \( e^{0^2} - \cos(2 \cdot 0) = 1 - 1 = 0 \)
Since both the numerator and the denominator evaluate to 0, we indeed have an indeterminate form \(\frac{0}{0}\).

3. Apply L'Hôpital's Rule:
Given that the limit is in the indeterminate form, we can apply L'Hôpital's Rule, which states that:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) is in the indeterminate form.

4. Compute the derivatives of the numerator and the denominator:
First, find the derivative of the numerator \( 3x \sin(4x) \):
[tex]\[ \frac{d}{dx} \left(3x \sin(4x)\right) = 3 \left(\sin(4x) + 4x \cos(4x)\right) = 3 \sin(4x) + 12x \cos(4x) \][/tex]

Next, find the derivative of the denominator \( e^{x^2} - \cos(2x) \):
[tex]\[ \frac{d}{dx} \left( e^{x^2} - \cos(2x) \right) = 2x e^{x^2} + 2\sin(2x) \][/tex]

5. Form the new limit with derivatives:
By applying L'Hôpital's Rule, the limit becomes:
[tex]\[ \lim_{x \to 0} \frac{3 \sin(4x) + 12x \cos(4x)}{2x e^{x^2} + 2 \sin(2x)} \][/tex]

6. Substitute \( x = 0 \) in the new limit:
Evaluate the new expression by substituting \( x = 0 \):
- Numerator: \( 3 \sin(4 \cdot 0) + 12 \cdot 0 \cdot \cos(4 \cdot 0) = 3 \cdot 0 + 12 \cdot 0 = 0 \)
- Denominator: \( 2 \cdot 0 \cdot e^{0^2} + 2 \cdot \sin(2 \cdot 0) = 0 + 2 \cdot 0 = 0 \)
The new fraction still evaluates to \( \frac{0}{0} \), so L'Hôpital's Rule needs to be applied again.

7. Apply L’Hôpital’s Rule again:
Differentiate the numerator and denominator again:
- Second derivative of the numerator \( 3 \sin(4x) + 12x \cos(4x) \):
[tex]\[ \frac{d}{dx}(3 \sin(4x) + 12x \cos(4x)) = 12 \cos(4x) - 48x \sin(4x) + 12 \cos(4x) = 24 \cos(4x) - 48x \sin(4x) \][/tex]
- Second derivative of the denominator \( 2x e^{x^2} + 2 \sin(2x) \):
[tex]\[ \frac{d}{dx}(2x e^{x^2} + 2 \sin(2x)) = 2e^{x^2} + 4x^2 e^{x^2} + 4 \cos(2x) \][/tex]

8. Form the new limit with second derivatives:
The limit becomes:
[tex]\[ \lim_{x \to 0} \frac{24 \cos(4x) - 48x \sin(4x)}{2 e^{x^2} + 4x^2 e^{x^2} + 4 \cos(2x)} \][/tex]

9. Substitute \( x = 0 \) in the new limit:
Evaluate the limit by directly substituting \( x = 0 \):
- Numerator: \( 24 \cos(4 \cdot 0) - 48 \cdot 0 \cdot \sin(4 \cdot 0) = 24 \)
- Denominator: \( 2 e^{0^2} + 4 \cdot 0^2 \cdot e^{0^2} + 4 \cos(2 \cdot 0) = 2 + 0 + 4 = 6 \)

10. Calculate the final limit:
[tex]\[ \lim_{x \to 0} \frac{24}{6} = 4 \][/tex]

Therefore, the limit is [tex]\(\boxed{4}\)[/tex].