From personal advice to professional guidance, IDNLearn.com has the answers you seek. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
To determine which table represents a linear function, we need to check if the values in the table form a linear relationship. A linear function has the form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. This means that the difference in \( y \) values divided by the difference in \( x \) values (the slope) should be constant for all points in the table.
Let's analyze each table step by step:
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & 1\frac{1}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
- From \( (1, \frac{1}{2}) \) to \( (2, 1) \):
[tex]\[ \text{slope} = \frac{1 - \frac{1}{2}}{2 - 1} = \frac{1}{2} \][/tex]
- From \( (2, 1) \) to \( (3, 1\frac{1}{2}) \):
[tex]\[ \text{slope} = \frac{1\frac{1}{2} - 1}{3 - 2} = \frac{\frac{3}{2} - 1}{1} = \frac{1}{2} \][/tex]
- From \( (3, 1\frac{1}{2}) \) to \( (4, 2) \):
[tex]\[ \text{slope} = \frac{2 - 1\frac{1}{2}}{4 - 3} = \frac{2 - \frac{3}{2}}{1} = \frac{1}{2} \][/tex]
All slopes are equal to \( \frac{1}{2} \), so this table represents a linear function.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 1 \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]
- From \( (1, 1) \) to \( (2, \frac{1}{2}) \):
[tex]\[ \text{slope} = \frac{\frac{1}{2} - 1}{2 - 1} = -\frac{1}{2} \][/tex]
- From \( (2, \frac{1}{2}) \) to \( (3, \frac{1}{3}) \):
[tex]\[ \text{slope} = \frac{\frac{1}{3} - \frac{1}{2}}{3 - 2} = \frac{\frac{2}{6} - \frac{3}{6}}{1} = -\frac{1}{6} \][/tex]
- From \( (3, \frac{1}{3}) \) to \( (4, \frac{1}{4}) \):
[tex]\[ \text{slope} = \frac{\frac{1}{4} - \frac{1}{3}}{4 - 3} = \frac{\frac{3}{12} - \frac{4}{12}}{1} = -\frac{1}{12} \][/tex]
Slopes are not consistent, so this table does not represent a linear function.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]
- From \( (1, 7) \) to \( (2, 9) \):
[tex]\[ \text{slope} = \frac{9 - 7}{2 - 1} = 2 \][/tex]
- From \( (2, 9) \) to \( (3, 13) \):
[tex]\[ \text{slope} = \frac{13 - 9}{3 - 2} = 4 \][/tex]
- From \( (3, 13) \) to \( (4, 21) \):
[tex]\[ \text{slope} = \frac{21 - 13}{4 - 3} = 8 \][/tex]
Slopes are not consistent, so this table does not represent a linear function.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]
- From \( (1, 0) \) to \( (2, 6) \):
[tex]\[ \text{slope} = \frac{6 - 0}{2 - 1} = 6 \][/tex]
- From \( (2, 6) \) to \( (3, 16) \):
[tex]\[ \text{slope} = \frac{16 - 6}{3 - 2} = 10 \][/tex]
- From \( (3, 16) \) to \( (4, 30) \):
[tex]\[ \text{slope} = \frac{30 - 16}{4 - 3} = 14 \][/tex]
Slopes are not consistent, so this table does not represent a linear function.
Conclusion:
Table 1 represents a linear function because its slopes are consistent.
Let's analyze each table step by step:
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & \frac{1}{2} \\ \hline 2 & 1 \\ \hline 3 & 1\frac{1}{2} \\ \hline 4 & 2 \\ \hline \end{array} \][/tex]
- From \( (1, \frac{1}{2}) \) to \( (2, 1) \):
[tex]\[ \text{slope} = \frac{1 - \frac{1}{2}}{2 - 1} = \frac{1}{2} \][/tex]
- From \( (2, 1) \) to \( (3, 1\frac{1}{2}) \):
[tex]\[ \text{slope} = \frac{1\frac{1}{2} - 1}{3 - 2} = \frac{\frac{3}{2} - 1}{1} = \frac{1}{2} \][/tex]
- From \( (3, 1\frac{1}{2}) \) to \( (4, 2) \):
[tex]\[ \text{slope} = \frac{2 - 1\frac{1}{2}}{4 - 3} = \frac{2 - \frac{3}{2}}{1} = \frac{1}{2} \][/tex]
All slopes are equal to \( \frac{1}{2} \), so this table represents a linear function.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 1 \\ \hline 2 & \frac{1}{2} \\ \hline 3 & \frac{1}{3} \\ \hline 4 & \frac{1}{4} \\ \hline \end{array} \][/tex]
- From \( (1, 1) \) to \( (2, \frac{1}{2}) \):
[tex]\[ \text{slope} = \frac{\frac{1}{2} - 1}{2 - 1} = -\frac{1}{2} \][/tex]
- From \( (2, \frac{1}{2}) \) to \( (3, \frac{1}{3}) \):
[tex]\[ \text{slope} = \frac{\frac{1}{3} - \frac{1}{2}}{3 - 2} = \frac{\frac{2}{6} - \frac{3}{6}}{1} = -\frac{1}{6} \][/tex]
- From \( (3, \frac{1}{3}) \) to \( (4, \frac{1}{4}) \):
[tex]\[ \text{slope} = \frac{\frac{1}{4} - \frac{1}{3}}{4 - 3} = \frac{\frac{3}{12} - \frac{4}{12}}{1} = -\frac{1}{12} \][/tex]
Slopes are not consistent, so this table does not represent a linear function.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 7 \\ \hline 2 & 9 \\ \hline 3 & 13 \\ \hline 4 & 21 \\ \hline \end{array} \][/tex]
- From \( (1, 7) \) to \( (2, 9) \):
[tex]\[ \text{slope} = \frac{9 - 7}{2 - 1} = 2 \][/tex]
- From \( (2, 9) \) to \( (3, 13) \):
[tex]\[ \text{slope} = \frac{13 - 9}{3 - 2} = 4 \][/tex]
- From \( (3, 13) \) to \( (4, 21) \):
[tex]\[ \text{slope} = \frac{21 - 13}{4 - 3} = 8 \][/tex]
Slopes are not consistent, so this table does not represent a linear function.
### Table 4:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0 \\ \hline 2 & 6 \\ \hline 3 & 16 \\ \hline 4 & 30 \\ \hline \end{array} \][/tex]
- From \( (1, 0) \) to \( (2, 6) \):
[tex]\[ \text{slope} = \frac{6 - 0}{2 - 1} = 6 \][/tex]
- From \( (2, 6) \) to \( (3, 16) \):
[tex]\[ \text{slope} = \frac{16 - 6}{3 - 2} = 10 \][/tex]
- From \( (3, 16) \) to \( (4, 30) \):
[tex]\[ \text{slope} = \frac{30 - 16}{4 - 3} = 14 \][/tex]
Slopes are not consistent, so this table does not represent a linear function.
Conclusion:
Table 1 represents a linear function because its slopes are consistent.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.