IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Our platform is designed to provide trustworthy and thorough answers to any questions you may have.
Sagot :
Sure, let's go through the details of the calculation step-by-step.
Given values:
- Charge \( q_1 = -75.8 \times 10^{-6} \) C
- Charge \( q_2 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
- Charge \( q_3 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
We also assume:
- The distance between \( q_1 \) and \( q_3 \) is \( 0.1 \) m
- The distance between \( q_2 \) and \( q_3 \) is \( 0.1 \) m
Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \).
### Step 1: Calculate Force \( F_1 \)
Force \( F_1 \) is the force exerted on \( q_3 \) by \( q_1 \).
Using Coulomb's law:
[tex]\[ F_1 = k \frac{|q_1 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_1 = 8.99 \times 10^9 \, \frac{|(-75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_1 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since \( q_1 \) is negative and \( q_3 \) is positive, the force \( F_1 \) will be attractive, pulling \( q_3 \) to the left, hence:
[tex]\[ \vec{F}_1 = -5165.33 \text{ N} \][/tex]
### Step 2: Calculate Force \( F_2 \)
Force \( F_2 \) is the force exerted on \( q_3 \) by \( q_2 \).
Using Coulomb's law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_2 = 8.99 \times 10^9 \, \frac{|(75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_2 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since both \( q_2 \) and \( q_3 \) are positive, the force \( F_2 \) will be repulsive, pushing \( q_3 \) to the right, hence:
[tex]\[ \vec{F}_2 = 5165.33 \text{ N} \][/tex]
### Step 3: Calculate Net Force \( F \) on \( q_3 \)
The net force \( \vec{F} \) is the sum of the forces \( \vec{F}_1 \) and \( \vec{F}_2 \):
[tex]\[ \vec{F} = \vec{F}_1 + \vec{F}_2 \][/tex]
Substitute the forces:
[tex]\[ \vec{F} = -5165.33 \text{ N} + 5165.33 \text{ N} \][/tex]
Result:
[tex]\[ \vec{F} = 10330.66 \text{ N} \][/tex]
### Summary
[tex]\[ \begin{aligned} \vec{F}_1 & = -5165.33 \text{ N (left)} \\ \vec{F}_2 & = 5165.33 \text{ N (right)} \\ \vec{F} & = 10330.66 \text{ N (net force to the right)} \\ \end{aligned} \][/tex]
Given values:
- Charge \( q_1 = -75.8 \times 10^{-6} \) C
- Charge \( q_2 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
- Charge \( q_3 = 75.8 \times 10^{-6} \) C (same magnitude as \( q_1 \))
We also assume:
- The distance between \( q_1 \) and \( q_3 \) is \( 0.1 \) m
- The distance between \( q_2 \) and \( q_3 \) is \( 0.1 \) m
Coulomb's constant \( k = 8.99 \times 10^9 \, \text{N m}^2 / \text{C}^2 \).
### Step 1: Calculate Force \( F_1 \)
Force \( F_1 \) is the force exerted on \( q_3 \) by \( q_1 \).
Using Coulomb's law:
[tex]\[ F_1 = k \frac{|q_1 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_1 = 8.99 \times 10^9 \, \frac{|(-75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_1 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since \( q_1 \) is negative and \( q_3 \) is positive, the force \( F_1 \) will be attractive, pulling \( q_3 \) to the left, hence:
[tex]\[ \vec{F}_1 = -5165.33 \text{ N} \][/tex]
### Step 2: Calculate Force \( F_2 \)
Force \( F_2 \) is the force exerted on \( q_3 \) by \( q_2 \).
Using Coulomb's law:
[tex]\[ F_2 = k \frac{|q_2 q_3|}{r^2} \][/tex]
Substitute the given values:
[tex]\[ F_2 = 8.99 \times 10^9 \, \frac{|(75.8 \times 10^{-6}) \times (75.8 \times 10^{-6})|}{(0.1)^2} \][/tex]
Result:
[tex]\[ F_2 = 5165.33 \text{ N (rounding to 2 decimal places for simplicity)} \][/tex]
Since both \( q_2 \) and \( q_3 \) are positive, the force \( F_2 \) will be repulsive, pushing \( q_3 \) to the right, hence:
[tex]\[ \vec{F}_2 = 5165.33 \text{ N} \][/tex]
### Step 3: Calculate Net Force \( F \) on \( q_3 \)
The net force \( \vec{F} \) is the sum of the forces \( \vec{F}_1 \) and \( \vec{F}_2 \):
[tex]\[ \vec{F} = \vec{F}_1 + \vec{F}_2 \][/tex]
Substitute the forces:
[tex]\[ \vec{F} = -5165.33 \text{ N} + 5165.33 \text{ N} \][/tex]
Result:
[tex]\[ \vec{F} = 10330.66 \text{ N} \][/tex]
### Summary
[tex]\[ \begin{aligned} \vec{F}_1 & = -5165.33 \text{ N (left)} \\ \vec{F}_2 & = 5165.33 \text{ N (right)} \\ \vec{F} & = 10330.66 \text{ N (net force to the right)} \\ \end{aligned} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.