Discover a wealth of knowledge and get your questions answered at IDNLearn.com. Get prompt and accurate answers to your questions from our community of knowledgeable experts.
Sagot :
To find the equilibrium concentration of \( \text{NCS}^{-} \) ions, we need to use the given data and follow these steps:
### Step 1: Determine the Total Volume of the Solution
We are given:
- Volume of ferric nitrate solution: \( 10.0 \, \text{mL} \)
- Volume of \( \text{NaNCS} \) solution: \( 2.0 \, \text{mL} \)
- Volume of distilled water: \( 8.0 \, \text{mL} \)
Adding these volumes together gives the total volume of the solution:
[tex]\[ \text{Total Volume} = 10.0 \, \text{mL} + 2.0 \, \text{mL} + 8.0 \, \text{mL} = 20.0 \, \text{mL} \][/tex]
### Step 2: Calculate Initial Moles of \( \text{Fe}^{3+} \) and \( \text{NCS}^{-} \)
- Concentration of ferric nitrate solution: \( 0.05 \, \text{M} \)
- Volume of ferric nitrate solution: \( 10.0 \, \text{mL} \) \( = 0.010 \, \text{L} \)
[tex]\[ \text{Moles of } \text{Fe}^{3+} = 0.05 \, \text{M} \times 0.010 \, \text{L} = 0.0005 \, \text{moles} \][/tex]
- Concentration of \( \text{NaNCS} \) solution: \( 5.0 \times 10^{-4} \, \text{M} \)
- Volume of \( \text{NaNCS} \) solution: \( 2.0 \, \text{mL} \) \( = 0.002 \, \text{L} \)
[tex]\[ \text{Moles of } \text{NCS}^{-} = 5.0 \times 10^{-4} \, \text{M} \times 0.002 \, \text{L} = 1.0 \times 10^{-6} \, \text{moles} \][/tex]
### Step 3: Calculate Initial Concentrations in the Final Mixture
- Total volume of the solution: \( 20.0 \, \text{mL} \) \( = 0.020 \, \text{L} \)
[tex]\[ \text{Initial concentration of } \text{Fe}^{3+} = \frac{0.0005 \, \text{moles}}{0.020 \, \text{L}} = 0.025 \, \text{M} \][/tex]
[tex]\[ \text{Initial concentration of } \text{NCS}^{-} = \frac{1.0 \times 10^{-6} \, \text{moles}}{0.020 \, \text{L}} = 5.0 \times 10^{-5} \, \text{M} \][/tex]
### Step 4: Establish the Equilibrium Condition
Given that all the \( \text{NCS}^- \) is converted to \( \text{FeNCS}^{2+} \), we have:
[tex]\[ [\text{FeNCS}^{2+}] = [\text{NCS}^{-}]_\text{initial} \][/tex]
Thus,
[tex]\[ [\text{FeNCS}^{2+}] = 5.0 \times 10^{-5} \, \text{M} \][/tex]
### Step 5: Equilibrium Concentration of \( \text{NCS}^{-} \)
At equilibrium, since all \( \text{NCS}^- \) is consumed to form \( \text{FeNCS}^{2+} \), the concentration of \( \text{NCS}^{-} \) at equilibrium is:
[tex]\[ [\text{NCS}^{-}]_\text{eq} = 0 \, \text{M} \][/tex]
Thus, the equilibrium concentration of the [tex]\( \text{NCS}^{-} \)[/tex] ion in the solution is [tex]\( \boxed{0 \, \text{M}} \)[/tex].
### Step 1: Determine the Total Volume of the Solution
We are given:
- Volume of ferric nitrate solution: \( 10.0 \, \text{mL} \)
- Volume of \( \text{NaNCS} \) solution: \( 2.0 \, \text{mL} \)
- Volume of distilled water: \( 8.0 \, \text{mL} \)
Adding these volumes together gives the total volume of the solution:
[tex]\[ \text{Total Volume} = 10.0 \, \text{mL} + 2.0 \, \text{mL} + 8.0 \, \text{mL} = 20.0 \, \text{mL} \][/tex]
### Step 2: Calculate Initial Moles of \( \text{Fe}^{3+} \) and \( \text{NCS}^{-} \)
- Concentration of ferric nitrate solution: \( 0.05 \, \text{M} \)
- Volume of ferric nitrate solution: \( 10.0 \, \text{mL} \) \( = 0.010 \, \text{L} \)
[tex]\[ \text{Moles of } \text{Fe}^{3+} = 0.05 \, \text{M} \times 0.010 \, \text{L} = 0.0005 \, \text{moles} \][/tex]
- Concentration of \( \text{NaNCS} \) solution: \( 5.0 \times 10^{-4} \, \text{M} \)
- Volume of \( \text{NaNCS} \) solution: \( 2.0 \, \text{mL} \) \( = 0.002 \, \text{L} \)
[tex]\[ \text{Moles of } \text{NCS}^{-} = 5.0 \times 10^{-4} \, \text{M} \times 0.002 \, \text{L} = 1.0 \times 10^{-6} \, \text{moles} \][/tex]
### Step 3: Calculate Initial Concentrations in the Final Mixture
- Total volume of the solution: \( 20.0 \, \text{mL} \) \( = 0.020 \, \text{L} \)
[tex]\[ \text{Initial concentration of } \text{Fe}^{3+} = \frac{0.0005 \, \text{moles}}{0.020 \, \text{L}} = 0.025 \, \text{M} \][/tex]
[tex]\[ \text{Initial concentration of } \text{NCS}^{-} = \frac{1.0 \times 10^{-6} \, \text{moles}}{0.020 \, \text{L}} = 5.0 \times 10^{-5} \, \text{M} \][/tex]
### Step 4: Establish the Equilibrium Condition
Given that all the \( \text{NCS}^- \) is converted to \( \text{FeNCS}^{2+} \), we have:
[tex]\[ [\text{FeNCS}^{2+}] = [\text{NCS}^{-}]_\text{initial} \][/tex]
Thus,
[tex]\[ [\text{FeNCS}^{2+}] = 5.0 \times 10^{-5} \, \text{M} \][/tex]
### Step 5: Equilibrium Concentration of \( \text{NCS}^{-} \)
At equilibrium, since all \( \text{NCS}^- \) is consumed to form \( \text{FeNCS}^{2+} \), the concentration of \( \text{NCS}^{-} \) at equilibrium is:
[tex]\[ [\text{NCS}^{-}]_\text{eq} = 0 \, \text{M} \][/tex]
Thus, the equilibrium concentration of the [tex]\( \text{NCS}^{-} \)[/tex] ion in the solution is [tex]\( \boxed{0 \, \text{M}} \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.