Find answers to your most challenging questions with the help of IDNLearn.com's experts. Get the information you need from our community of experts, who provide detailed and trustworthy answers.

Question 15

Consider the reaction between [tex]Fe^{3+}[/tex] and [tex]NCS^{-}[/tex] ions. The equilibrium constant for this reaction is 620.4. Calculate the equilibrium concentration of [tex]NCS^{-}[/tex] ion in a solution containing [tex]10.0 \, \text{mL}[/tex] of [tex]0.05 \, \text{M}[/tex] ferric nitrate in [tex]1 \, \text{M} \, \text{HNO}_3[/tex], [tex]2.0 \, \text{mL}[/tex] of [tex]5.0 \times 10^{-4} \, \text{M} \, \text{NaNCS}[/tex], and [tex]8.0 \, \text{mL}[/tex] of distilled water. Assume that all the [tex]NCS^{-}[/tex] is converted to [tex]FeNCS^{2+}[/tex].


Sagot :

Let's break down the problem step-by-step for clarity and to understand how the final answer was achieved.

Given Data:
1. The equilibrium constant for the reaction, \( K_{eq} = 620.4 \).
2. Volume of ferric nitrate solution, \( V_{Fe(NO_3)_3} = 10.0 \) mL.
3. Concentration of ferric nitrate, \( [Fe(NO_3)_3] = 0.05 \) M.
4. Volume of NaNCS solution, \( V_{NaNCS} = 2.0 \) mL.
5. Concentration of NaNCS, \( [NaNCS] = 5.0 \times 10^{-4} \) M.
6. Volume of distilled water added, \( V_{H_2O} = 8.0 \) mL.
7. Assume all NCS\(^-\) is converted to FeNCS\(^{2+}\).

Step-by-Step Solution:

1. Calculate the Total Volume of the Solution:
[tex]\[ V_{total} = V_{Fe(NO_3)_3} + V_{NaNCS} + V_{H_2O} \][/tex]
[tex]\[ V_{total} = 10.0 \, \text{mL} + 2.0 \, \text{mL} + 8.0 \, \text{mL} = 20.0 \, \text{mL} \][/tex]

2. Calculate the Initial Moles of Ferric Nitrate, \(Fe^{3+}\):
[tex]\[ \text{moles}_{Fe(NO_3)_3} = \text{concentration} \times \text{volume (in L)} \][/tex]
Since \(1 \, \text{mL} = 0.001 \, \text{L}\):
[tex]\[ \text{moles}_{Fe(NO_3)_3} = 0.05 \, \text{M} \times \left( \frac{10.0 \, \text{mL}}{1000} \right) \][/tex]
[tex]\[ \text{moles}_{Fe(NO_3)_3} = 0.05 \, \text{M} \times 0.01 \, \text{L} = 0.0005 \, \text{moles} \][/tex]

3. Calculate the Initial Moles of NCS\(^-\):
[tex]\[ \text{moles}_{NCS^-} = \text{concentration} \times \text{volume (in L)} \][/tex]
[tex]\[ \text{moles}_{NCS^-} = 5.0 \times 10^{-4} \, \text{M} \times \left( \frac{2.0 \, \text{mL}}{1000} \right) \][/tex]
[tex]\[ \text{moles}_{NCS^-} = 5.0 \times 10^{-4} \, \text{M} \times 0.002 \, \text{L} = 0.000001 \, \text{moles} = 1.0 \times 10^{-6} \, \text{moles} \][/tex]

4. Equilibrium Concentration of NCS\(^-\):
Given that all NCS\(^-\) is converted to FeNCS\(^{2+}\), the concentration of NCS\(^-\) at equilibrium is zero.

Therefore, the equilibrium concentration of NCS\(^-\) is:
[tex]\[ [ NCS^- ]_{eq} = 0 \, \text{M} \][/tex]

In conclusion, the equilibrium concentration of the NCS[tex]\(^-\)[/tex] ion in this solution is [tex]\(0 \, \text{M}\)[/tex].