IDNLearn.com: Your one-stop destination for finding reliable answers. Discover prompt and accurate answers from our community of experienced professionals.
Sagot :
Sure, let's go through this step by step:
### Equation Given:
[tex]\[ y = x^3 - x^2 - 24x - 36 \][/tex]
A. Finding the Roots of the Equation \( y = 0 \):
1. To determine the values of \( x \) where \( y \) equals zero (\( y = 0 \)), solve the equation:
[tex]\[ x^3 - x^2 - 24x - 36 = 0 \][/tex]
The solutions (roots) are:
[tex]\[ x = -3, \, x = -2, \, x = 6 \][/tex]
So, the roots of the equation are:
[tex]\[ x = -3, -2, 6 \][/tex]
B. Determining the Critical Points:
2. First, find the first derivative \( y' \) of the given function \( y = x^3 - x^2 - 24x - 36 \):
[tex]\[ y' = \frac{d}{dx}(x^3 - x^2 - 24x - 36) \][/tex]
The derivative is:
[tex]\[ y' = 3x^2 - 2x - 24 \][/tex]
3. To obtain the critical points, set the first derivative equal to zero and solve for \( x \):
[tex]\[ 3x^2 - 2x - 24 = 0 \][/tex]
Solving this quadratic equation gives:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]
The critical points are:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]
C. Classifying the Critical Points Using the Second Derivative:
4. Find the second derivative \( y'' \) of the given function:
[tex]\[ y'' = \frac{d}{dx}(3x^2 - 2x - 24) \][/tex]
The second derivative is:
[tex]\[ y'' = 6x - 2 \][/tex]
5. Evaluate the second derivative at each of the critical points to determine whether each is a local maximum, local minimum, or an inflection point.
For \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) - 2 = -2\sqrt{73} \][/tex]
For \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) - 2 = 2\sqrt{73} \][/tex]
Since:
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = -2\sqrt{73} \quad (\text{Negative, indicating a local maximum}) \][/tex]
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 2\sqrt{73} \quad (Positive, indicating a local minimum) \][/tex]
Summary:
- The roots of the equation \( y = x^3 - x^2 - 24x - 36 \) are \( x = -3, -2, 6 \).
- The critical points of the function are at \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \) and \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \).
- At \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \), there is a local maximum since the second derivative is negative.
- At [tex]\( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \)[/tex], there is a local minimum since the second derivative is positive.
### Equation Given:
[tex]\[ y = x^3 - x^2 - 24x - 36 \][/tex]
A. Finding the Roots of the Equation \( y = 0 \):
1. To determine the values of \( x \) where \( y \) equals zero (\( y = 0 \)), solve the equation:
[tex]\[ x^3 - x^2 - 24x - 36 = 0 \][/tex]
The solutions (roots) are:
[tex]\[ x = -3, \, x = -2, \, x = 6 \][/tex]
So, the roots of the equation are:
[tex]\[ x = -3, -2, 6 \][/tex]
B. Determining the Critical Points:
2. First, find the first derivative \( y' \) of the given function \( y = x^3 - x^2 - 24x - 36 \):
[tex]\[ y' = \frac{d}{dx}(x^3 - x^2 - 24x - 36) \][/tex]
The derivative is:
[tex]\[ y' = 3x^2 - 2x - 24 \][/tex]
3. To obtain the critical points, set the first derivative equal to zero and solve for \( x \):
[tex]\[ 3x^2 - 2x - 24 = 0 \][/tex]
Solving this quadratic equation gives:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]
The critical points are:
[tex]\[ x = \frac{1}{3} - \frac{\sqrt{73}}{3} \text{ and } x = \frac{1}{3} + \frac{\sqrt{73}}{3} \][/tex]
C. Classifying the Critical Points Using the Second Derivative:
4. Find the second derivative \( y'' \) of the given function:
[tex]\[ y'' = \frac{d}{dx}(3x^2 - 2x - 24) \][/tex]
The second derivative is:
[tex]\[ y'' = 6x - 2 \][/tex]
5. Evaluate the second derivative at each of the critical points to determine whether each is a local maximum, local minimum, or an inflection point.
For \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) - 2 = -2\sqrt{73} \][/tex]
For \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \):
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 6 \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) - 2 = 2\sqrt{73} \][/tex]
Since:
[tex]\[ y'' \left( \frac{1}{3} - \frac{\sqrt{73}}{3} \right) = -2\sqrt{73} \quad (\text{Negative, indicating a local maximum}) \][/tex]
[tex]\[ y'' \left( \frac{1}{3} + \frac{\sqrt{73}}{3} \right) = 2\sqrt{73} \quad (Positive, indicating a local minimum) \][/tex]
Summary:
- The roots of the equation \( y = x^3 - x^2 - 24x - 36 \) are \( x = -3, -2, 6 \).
- The critical points of the function are at \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \) and \( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \).
- At \( x = \frac{1}{3} - \frac{\sqrt{73}}{3} \), there is a local maximum since the second derivative is negative.
- At [tex]\( x = \frac{1}{3} + \frac{\sqrt{73}}{3} \)[/tex], there is a local minimum since the second derivative is positive.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.