IDNLearn.com provides a seamless experience for finding and sharing answers. Whether your question is simple or complex, our community is here to provide detailed and trustworthy answers quickly and effectively.
Sagot :
Let's go through the solution step-by-step.
### Given:
The circle \( L \) with equation \( x^2 + y^2 = 9 \).
Point \( P \left( \frac{3}{2}, \frac{3\sqrt{3}}{4} \right) \) is on the circle.
### Part (a) - The gradient of \( OP \):
The gradient of a line passing through points \( O(0, 0) \) and \( P \left( \frac{3}{2}, \frac{3\sqrt{3}}{4} \right) \) is calculated as follows:
[tex]\[ \text{Gradient of } OP = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\frac{3\sqrt{3}}{4} - 0}{\frac{3}{2} - 0} = \frac{\frac{3\sqrt{3}}{4}}{\frac{3}{2}} \][/tex]
Simplifying the fraction:
[tex]\[ = \frac{3\sqrt{3}}{4} \div \frac{3}{2} = \frac{3\sqrt{3}}{4} \times \frac{2}{3} = \frac{3\sqrt{3} \cdot 2}{3 \cdot 4} = \frac{6\sqrt{3}}{12} = \frac{\sqrt{3}}{2} \][/tex]
So, \( \frac{\sqrt{3}}{a} = \frac{\sqrt{3}}{2} \). Therefore,
[tex]\[ a = 2 \][/tex]
### Part (b) - The gradient of the tangent at \( P \):
The gradient of the tangent to a circle at any point is the negative reciprocal of the gradient of the radius to that point.
The gradient of the tangent at \( P \):
[tex]\[ \text{Gradient of the tangent} = -\frac{1}{\text{Gradient of } OP} = -\frac{1}{\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} \][/tex]
So, \( \frac{b}{\sqrt{3}} = -\frac{2}{\sqrt{3}} \). Therefore,
[tex]\[ b = -2 \][/tex]
### Part (c) - The equation of the tangent and where it intersects the \( y \)-axis:
The equation of the tangent to the circle at point \( P \left( \frac{3}{2}, \frac{3\sqrt{3}}{4} \right) \) with a gradient of \( -\frac{2}{\sqrt{3}} \) is:
Using the point-slope form \( y - y_1 = m (x - x_1) \):
[tex]\[ y - \frac{3\sqrt{3}}{4} = -\frac{2}{\sqrt{3}} \left( x - \frac{3}{2} \right) \][/tex]
To find the \( y \)-intercept where \( x = 0 \):
[tex]\[ y - \frac{3\sqrt{3}}{4} = -\frac{2}{\sqrt{3}} \left( 0 - \frac{3}{2} \right) \][/tex]
[tex]\[ y - \frac{3\sqrt{3}}{4} = -\frac{2}{\sqrt{3}} \times -\frac{3}{2} \][/tex]
[tex]\[ y - \frac{3\sqrt{3}}{4} = \frac{6}{2\sqrt{3}} \][/tex]
[tex]\[ y - \frac{3\sqrt{3}}{4} = \frac{3\sqrt{3}}{3} \][/tex]
[tex]\[ y - \frac{3\sqrt{3}}{4} = \sqrt{3} \][/tex]
[tex]\[ y = \sqrt{3} + \frac{3\sqrt{3}}{4} \][/tex]
[tex]\[ y = \frac{4\sqrt{3}}{4} + \frac{3\sqrt{3}}{4} \][/tex]
[tex]\[ y = \frac{7\sqrt{3}}{4} \][/tex]
So, the \( y \)-intercept is \( \left( 0, \frac{7\sqrt{3}}{c} \right) \).
Therefore,
[tex]\[ \frac{7\sqrt{3}}{c} = \frac{7\sqrt{3}}{4} \][/tex]
[tex]\[ c = 4 \][/tex]
### Conclusion:
- (a) \( a = 2 \)
- (b) \( b = -2 \)
- (c) [tex]\( c = 4 \)[/tex]
### Given:
The circle \( L \) with equation \( x^2 + y^2 = 9 \).
Point \( P \left( \frac{3}{2}, \frac{3\sqrt{3}}{4} \right) \) is on the circle.
### Part (a) - The gradient of \( OP \):
The gradient of a line passing through points \( O(0, 0) \) and \( P \left( \frac{3}{2}, \frac{3\sqrt{3}}{4} \right) \) is calculated as follows:
[tex]\[ \text{Gradient of } OP = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\frac{3\sqrt{3}}{4} - 0}{\frac{3}{2} - 0} = \frac{\frac{3\sqrt{3}}{4}}{\frac{3}{2}} \][/tex]
Simplifying the fraction:
[tex]\[ = \frac{3\sqrt{3}}{4} \div \frac{3}{2} = \frac{3\sqrt{3}}{4} \times \frac{2}{3} = \frac{3\sqrt{3} \cdot 2}{3 \cdot 4} = \frac{6\sqrt{3}}{12} = \frac{\sqrt{3}}{2} \][/tex]
So, \( \frac{\sqrt{3}}{a} = \frac{\sqrt{3}}{2} \). Therefore,
[tex]\[ a = 2 \][/tex]
### Part (b) - The gradient of the tangent at \( P \):
The gradient of the tangent to a circle at any point is the negative reciprocal of the gradient of the radius to that point.
The gradient of the tangent at \( P \):
[tex]\[ \text{Gradient of the tangent} = -\frac{1}{\text{Gradient of } OP} = -\frac{1}{\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} \][/tex]
So, \( \frac{b}{\sqrt{3}} = -\frac{2}{\sqrt{3}} \). Therefore,
[tex]\[ b = -2 \][/tex]
### Part (c) - The equation of the tangent and where it intersects the \( y \)-axis:
The equation of the tangent to the circle at point \( P \left( \frac{3}{2}, \frac{3\sqrt{3}}{4} \right) \) with a gradient of \( -\frac{2}{\sqrt{3}} \) is:
Using the point-slope form \( y - y_1 = m (x - x_1) \):
[tex]\[ y - \frac{3\sqrt{3}}{4} = -\frac{2}{\sqrt{3}} \left( x - \frac{3}{2} \right) \][/tex]
To find the \( y \)-intercept where \( x = 0 \):
[tex]\[ y - \frac{3\sqrt{3}}{4} = -\frac{2}{\sqrt{3}} \left( 0 - \frac{3}{2} \right) \][/tex]
[tex]\[ y - \frac{3\sqrt{3}}{4} = -\frac{2}{\sqrt{3}} \times -\frac{3}{2} \][/tex]
[tex]\[ y - \frac{3\sqrt{3}}{4} = \frac{6}{2\sqrt{3}} \][/tex]
[tex]\[ y - \frac{3\sqrt{3}}{4} = \frac{3\sqrt{3}}{3} \][/tex]
[tex]\[ y - \frac{3\sqrt{3}}{4} = \sqrt{3} \][/tex]
[tex]\[ y = \sqrt{3} + \frac{3\sqrt{3}}{4} \][/tex]
[tex]\[ y = \frac{4\sqrt{3}}{4} + \frac{3\sqrt{3}}{4} \][/tex]
[tex]\[ y = \frac{7\sqrt{3}}{4} \][/tex]
So, the \( y \)-intercept is \( \left( 0, \frac{7\sqrt{3}}{c} \right) \).
Therefore,
[tex]\[ \frac{7\sqrt{3}}{c} = \frac{7\sqrt{3}}{4} \][/tex]
[tex]\[ c = 4 \][/tex]
### Conclusion:
- (a) \( a = 2 \)
- (b) \( b = -2 \)
- (c) [tex]\( c = 4 \)[/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.