Explore a world of knowledge and get your questions answered on IDNLearn.com. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.

Consider the following reversible reaction:
[tex]\[ 2 \text{H}_2\text{O} (g) \leftrightharpoons 2 \text{H}_2(g) + \text{O}_2(g) \][/tex]

What is the equilibrium constant expression for the given system?

A. [tex]\[ K_{\text{eop}} = \frac{[\text{H}_2\text{O}]}{[\text{H}_2][\text{O}_2]} \][/tex]

B. [tex]\[ K_{S O} = \frac{[\text{H}_2\text{O}]^2}{[\text{H}_2]^2[\text{O}_2]} \][/tex]

C. [tex]\[ K_{\infty 0} = \frac{[\text{H}_2]^2[\text{O}_2]}{[\text{H}_2\text{O}]} \][/tex]

D. [tex]\[ K_{e Q} = \frac{[\text{H}_2]^2[\text{O}_2]}{[\text{H}_2\text{O}]^2} \][/tex]


Sagot :

To identify the correct equilibrium constant expression for the given reaction:

[tex]\[ 2 H_2O(g) \leftrightharpoons 2 H_2(g) + O_2(g) \][/tex]

we need to use the general form of the equilibrium constant expression for a reversible reaction:

For a generic reaction of the form:

[tex]\[ aA + bB \leftrightharpoons cC + dD \][/tex]

the equilibrium constant expression (\( K_\text{eq} \)) is given by:

[tex]\[ K_\text{eq} = \frac{[C]^c [D]^d}{[A]^a [B]^b} \][/tex]

Here, \( [A] \), \( [B] \), \( [C] \), and \( [D] \) represent the molar concentrations of the reactants and products, and \( a \), \( b \), \( c \), and \( d \) are their respective stoichiometric coefficients.

Applying this to our given reaction:

[tex]\[ 2 H_2O(g) \leftrightharpoons 2 H_2(g) + O_2(g) \][/tex]

we can identify the following:
- \( [H_2O] \) with a coefficient of 2 on the reactant side
- \( [H_2] \) with a coefficient of 2 on the product side
- \( [O_2] \) with a coefficient of 1 on the product side

Thus, the equilibrium constant expression (\( K_\text{eq} \)) for this reaction is:

[tex]\[ K_\text{eq} = \frac{[H_2]^2 [O_2]}{[H_2O]^2} \][/tex]

Comparing this with the given multiple choices:

1. \( K_{\text {eop }}=\frac{\left[ H _2 O \right]}{\left[ H _2\right]\left[ O _2\right]} \)
2. \( K_{S O}=\frac{\left[ H _2 O \right]^2}{\left[ H _2\right]^2\left[ O _2\right]} \)
3. \( K_{\infty 0}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]} \)
4. \( K_{e Q}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]^2} \)

The correct equilibrium constant expression is:

[tex]\[ K_{e Q}=\frac{\left[ H _2\right]^2\left[ O _2\right]}{\left[ H _2 O \right]^2} \][/tex]

Therefore, the correct choice is [tex]\( K_{e Q} \)[/tex].