Join IDNLearn.com and become part of a knowledge-sharing community that thrives on curiosity. Get accurate and comprehensive answers from our network of experienced professionals.
Sagot :
Sure, let's work through the problem step-by-step. We need to fit a quadratic model \( y = b_0 + b_1 x + b_2 x^2 \) to the given data:
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline \end{array} \][/tex]
Given the data transformation \( v = x - 3 \) and \( w = \frac{y - 45}{5} \), let's first compute the transformed values:
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline v & -2 & -1 & 0 & 1 & 2 \\ \hline \end{array} \][/tex]
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline w & -8 & -5 & 0 & 6 & 13 \\ \hline \end{array} \][/tex]
Next, we compute the necessary sums for the transformed values \(v\) and \(w\). We need the following sums:
[tex]\[ \sum v, \quad \sum v^2, \quad \sum v^3, \quad \sum v^4, \quad \sum w, \quad \sum vw, \quad \sum v^2 w \][/tex]
From the problem statement and provided results:
1. \( n = 5 \) (number of data points)
2. \( \sum v = 0 \)
3. \( \sum v^2 = 10 \)
4. \( \sum v^3 = 0 \)
5. \( \sum v^4 = 34 \)
6. \( \sum w = 6.0 \)
7. \( \sum vw = 53.0 \)
8. \( \sum v^2 w = 21.0 \)
These values are confirmed as follows:
\begin{align}
\sum v & = -2 + (-1) + 0 + 1 + 2 = 0 \\
\sum v^2 & = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\
\sum v^3 & = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 = -8 - 1 + 0 + 1 + 8 = 0 \\
\sum v^4 & = (-2)^4 + (-1)^4 + 0^4 + 1^4 + 2^4 = 16 + 1 + 0 + 1 + 16 = 34 \\
\sum w & = -8 + (-5) + 0 + 6 + 13 = 6 \\
\sum vw & = (-2)(-8) + (-1)(-5) + (0)(0) + (1)(6) + (2)(13) = 16 + 5 + 0 + 6 + 26 = 53 \\
\sum v^2 w & = (-2)^2(-8) + (-1)^2(-5) + (0)^2(0) + (1)^2(6) + (2)^2(13) = 4(-8) + 1(-5) + 0 + 1(6) + 4(13) \\
& = -32 - 5 + 0 + 6 + 52 = 21
\end{align}
Using these sums, we can form the system of equations as follows:
[tex]\[ \begin{pmatrix} n & \sum v & \sum v^2 \\ \sum v & \sum v^2 & \sum v^3 \\ \sum v^2 & \sum v^3 & \sum v^4 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \sum w \\ \sum vw \\ \sum v^2 w \end{pmatrix} \][/tex]
Substituting the computed values gives:
[tex]\[ \begin{pmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 53 \\ 21 \end{pmatrix} \][/tex]
So the system of equations is:
[tex]\[ \begin{aligned} 5b_0 + 0b_1 + 10b_2 &= 6 \\ 0b_0 + 10b_1 + 0b_2 &= 53 \\ 10b_0 + 0b_1 + 34b_2 &= 21 \end{aligned} \][/tex]
This is the system of equations that yields the least squares regression coefficients for the quadratic model after applying the given data transformations.
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline \end{array} \][/tex]
Given the data transformation \( v = x - 3 \) and \( w = \frac{y - 45}{5} \), let's first compute the transformed values:
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline v & -2 & -1 & 0 & 1 & 2 \\ \hline \end{array} \][/tex]
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline w & -8 & -5 & 0 & 6 & 13 \\ \hline \end{array} \][/tex]
Next, we compute the necessary sums for the transformed values \(v\) and \(w\). We need the following sums:
[tex]\[ \sum v, \quad \sum v^2, \quad \sum v^3, \quad \sum v^4, \quad \sum w, \quad \sum vw, \quad \sum v^2 w \][/tex]
From the problem statement and provided results:
1. \( n = 5 \) (number of data points)
2. \( \sum v = 0 \)
3. \( \sum v^2 = 10 \)
4. \( \sum v^3 = 0 \)
5. \( \sum v^4 = 34 \)
6. \( \sum w = 6.0 \)
7. \( \sum vw = 53.0 \)
8. \( \sum v^2 w = 21.0 \)
These values are confirmed as follows:
\begin{align}
\sum v & = -2 + (-1) + 0 + 1 + 2 = 0 \\
\sum v^2 & = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\
\sum v^3 & = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 = -8 - 1 + 0 + 1 + 8 = 0 \\
\sum v^4 & = (-2)^4 + (-1)^4 + 0^4 + 1^4 + 2^4 = 16 + 1 + 0 + 1 + 16 = 34 \\
\sum w & = -8 + (-5) + 0 + 6 + 13 = 6 \\
\sum vw & = (-2)(-8) + (-1)(-5) + (0)(0) + (1)(6) + (2)(13) = 16 + 5 + 0 + 6 + 26 = 53 \\
\sum v^2 w & = (-2)^2(-8) + (-1)^2(-5) + (0)^2(0) + (1)^2(6) + (2)^2(13) = 4(-8) + 1(-5) + 0 + 1(6) + 4(13) \\
& = -32 - 5 + 0 + 6 + 52 = 21
\end{align}
Using these sums, we can form the system of equations as follows:
[tex]\[ \begin{pmatrix} n & \sum v & \sum v^2 \\ \sum v & \sum v^2 & \sum v^3 \\ \sum v^2 & \sum v^3 & \sum v^4 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \sum w \\ \sum vw \\ \sum v^2 w \end{pmatrix} \][/tex]
Substituting the computed values gives:
[tex]\[ \begin{pmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 53 \\ 21 \end{pmatrix} \][/tex]
So the system of equations is:
[tex]\[ \begin{aligned} 5b_0 + 0b_1 + 10b_2 &= 6 \\ 0b_0 + 10b_1 + 0b_2 &= 53 \\ 10b_0 + 0b_1 + 34b_2 &= 21 \end{aligned} \][/tex]
This is the system of equations that yields the least squares regression coefficients for the quadratic model after applying the given data transformations.
We are happy to have you as part of our community. Keep asking, answering, and sharing your insights. Together, we can create a valuable knowledge resource. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.