IDNLearn.com: Where curiosity meets clarity and questions find their answers. Join our platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
Sure, let's work through the problem step-by-step. We need to fit a quadratic model \( y = b_0 + b_1 x + b_2 x^2 \) to the given data:
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline \end{array} \][/tex]
Given the data transformation \( v = x - 3 \) and \( w = \frac{y - 45}{5} \), let's first compute the transformed values:
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline v & -2 & -1 & 0 & 1 & 2 \\ \hline \end{array} \][/tex]
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline w & -8 & -5 & 0 & 6 & 13 \\ \hline \end{array} \][/tex]
Next, we compute the necessary sums for the transformed values \(v\) and \(w\). We need the following sums:
[tex]\[ \sum v, \quad \sum v^2, \quad \sum v^3, \quad \sum v^4, \quad \sum w, \quad \sum vw, \quad \sum v^2 w \][/tex]
From the problem statement and provided results:
1. \( n = 5 \) (number of data points)
2. \( \sum v = 0 \)
3. \( \sum v^2 = 10 \)
4. \( \sum v^3 = 0 \)
5. \( \sum v^4 = 34 \)
6. \( \sum w = 6.0 \)
7. \( \sum vw = 53.0 \)
8. \( \sum v^2 w = 21.0 \)
These values are confirmed as follows:
\begin{align}
\sum v & = -2 + (-1) + 0 + 1 + 2 = 0 \\
\sum v^2 & = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\
\sum v^3 & = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 = -8 - 1 + 0 + 1 + 8 = 0 \\
\sum v^4 & = (-2)^4 + (-1)^4 + 0^4 + 1^4 + 2^4 = 16 + 1 + 0 + 1 + 16 = 34 \\
\sum w & = -8 + (-5) + 0 + 6 + 13 = 6 \\
\sum vw & = (-2)(-8) + (-1)(-5) + (0)(0) + (1)(6) + (2)(13) = 16 + 5 + 0 + 6 + 26 = 53 \\
\sum v^2 w & = (-2)^2(-8) + (-1)^2(-5) + (0)^2(0) + (1)^2(6) + (2)^2(13) = 4(-8) + 1(-5) + 0 + 1(6) + 4(13) \\
& = -32 - 5 + 0 + 6 + 52 = 21
\end{align}
Using these sums, we can form the system of equations as follows:
[tex]\[ \begin{pmatrix} n & \sum v & \sum v^2 \\ \sum v & \sum v^2 & \sum v^3 \\ \sum v^2 & \sum v^3 & \sum v^4 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \sum w \\ \sum vw \\ \sum v^2 w \end{pmatrix} \][/tex]
Substituting the computed values gives:
[tex]\[ \begin{pmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 53 \\ 21 \end{pmatrix} \][/tex]
So the system of equations is:
[tex]\[ \begin{aligned} 5b_0 + 0b_1 + 10b_2 &= 6 \\ 0b_0 + 10b_1 + 0b_2 &= 53 \\ 10b_0 + 0b_1 + 34b_2 &= 21 \end{aligned} \][/tex]
This is the system of equations that yields the least squares regression coefficients for the quadratic model after applying the given data transformations.
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline \end{array} \][/tex]
Given the data transformation \( v = x - 3 \) and \( w = \frac{y - 45}{5} \), let's first compute the transformed values:
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline v & -2 & -1 & 0 & 1 & 2 \\ \hline \end{array} \][/tex]
[tex]\[ \begin{array}{c|c|c|c|c|c} \hline y & 5 & 20 & 45 & 75 & 110 \\ \hline w & -8 & -5 & 0 & 6 & 13 \\ \hline \end{array} \][/tex]
Next, we compute the necessary sums for the transformed values \(v\) and \(w\). We need the following sums:
[tex]\[ \sum v, \quad \sum v^2, \quad \sum v^3, \quad \sum v^4, \quad \sum w, \quad \sum vw, \quad \sum v^2 w \][/tex]
From the problem statement and provided results:
1. \( n = 5 \) (number of data points)
2. \( \sum v = 0 \)
3. \( \sum v^2 = 10 \)
4. \( \sum v^3 = 0 \)
5. \( \sum v^4 = 34 \)
6. \( \sum w = 6.0 \)
7. \( \sum vw = 53.0 \)
8. \( \sum v^2 w = 21.0 \)
These values are confirmed as follows:
\begin{align}
\sum v & = -2 + (-1) + 0 + 1 + 2 = 0 \\
\sum v^2 & = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\
\sum v^3 & = (-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 = -8 - 1 + 0 + 1 + 8 = 0 \\
\sum v^4 & = (-2)^4 + (-1)^4 + 0^4 + 1^4 + 2^4 = 16 + 1 + 0 + 1 + 16 = 34 \\
\sum w & = -8 + (-5) + 0 + 6 + 13 = 6 \\
\sum vw & = (-2)(-8) + (-1)(-5) + (0)(0) + (1)(6) + (2)(13) = 16 + 5 + 0 + 6 + 26 = 53 \\
\sum v^2 w & = (-2)^2(-8) + (-1)^2(-5) + (0)^2(0) + (1)^2(6) + (2)^2(13) = 4(-8) + 1(-5) + 0 + 1(6) + 4(13) \\
& = -32 - 5 + 0 + 6 + 52 = 21
\end{align}
Using these sums, we can form the system of equations as follows:
[tex]\[ \begin{pmatrix} n & \sum v & \sum v^2 \\ \sum v & \sum v^2 & \sum v^3 \\ \sum v^2 & \sum v^3 & \sum v^4 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \sum w \\ \sum vw \\ \sum v^2 w \end{pmatrix} \][/tex]
Substituting the computed values gives:
[tex]\[ \begin{pmatrix} 5 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 53 \\ 21 \end{pmatrix} \][/tex]
So the system of equations is:
[tex]\[ \begin{aligned} 5b_0 + 0b_1 + 10b_2 &= 6 \\ 0b_0 + 10b_1 + 0b_2 &= 53 \\ 10b_0 + 0b_1 + 34b_2 &= 21 \end{aligned} \][/tex]
This is the system of equations that yields the least squares regression coefficients for the quadratic model after applying the given data transformations.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.