From beginner to expert, IDNLearn.com has answers for everyone. Discover in-depth answers to your questions from our community of experienced professionals.
Sagot :
Certainly! Let's find the integral \(\int \sin^4 x \, dx\) step-by-step.
To tackle this integral, we'll use a trigonometric identity to simplify the integrand. One useful identity for powers of sine and cosine is:
[tex]\[ \sin^2 x = \frac{1 - \cos(2x)}{2} \][/tex]
Thus, we can express \(\sin^4 x\) in terms of \(\cos(2x)\):
[tex]\[ \sin^4 x = \left( \sin^2 x \right)^2 = \left( \frac{1 - \cos(2x)}{2} \right)^2 \][/tex]
[tex]\[ = \left( \frac{1 - \cos(2x)}{2} \right) \left( \frac{1 - \cos(2x)}{2} \right) \][/tex]
[tex]\[ = \frac{(1 - \cos(2x))^2}{4} \][/tex]
[tex]\[ = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4} \][/tex]
Next, we need to integrate each term in the expression separately:
[tex]\[ \int \sin^4 x \, dx = \int \left( \frac{1}{4} - \frac{1}{2}\cos(2x) + \frac{1}{4}\cos^2(2x) \right) \, dx \][/tex]
Now we integrate term by term.
1. \(\int \frac{1}{4} \, dx = \frac{1}{4} x\)
2. \(\int -\frac{1}{2} \cos(2x) \, dx\):
Use the substitution \(u = 2x\), \(du = 2 \, dx\), hence \(dx = \frac{1}{2} du\).
[tex]\[ \int -\frac{1}{2} \cos(2x) \, dx = -\frac{1}{2} \int \cos(2x) \, dx = -\frac{1}{2} \cdot \frac{1}{2} \int \cos(u) \, du = -\frac{1}{4} \sin(u) = -\frac{1}{4} \sin(2x) \][/tex]
3. \(\int \frac{1}{4} \cos^2(2x) \, dx\):
Use the identity \(\cos^2(2x) = \frac{1 + \cos(4x)}{2}\):
[tex]\[ \int \frac{1}{4} \cos^2(2x) \, dx = \int \frac{1}{4} \cdot \frac{1 + \cos(4x)}{2} \, dx \][/tex]
[tex]\[ = \int \frac{1}{8} + \frac{1}{8} \cos(4x) \, dx = \frac{1}{8} \int 1 \, dx + \frac{1}{8} \int \cos(4x) \, dx \][/tex]
[tex]\[ = \frac{1}{8} x + \frac{1}{8} \cdot \frac{1}{4} \sin(4x) = \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Combining all these results, we get:
[tex]\[ \int \sin^4 x \, dx = \frac{1}{4} x - \frac{1}{4} \sin(2x) + \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Simplifying this expression:
[tex]\[ \int \sin^4 x \, dx = \left( \frac{1}{4} + \frac{1}{8} \right) x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
Finally, we return to the form where \(\sin(2x) = 2 \sin x \cos x\) and \(\sin(4x) = 2 \sin(2x) \cos(2x) = 2(2 \sin x \cos x)(2 \cos^2 x - 1)\):
[tex]\[ \frac{3}{8} x - \frac{1}{4} (2 \sin x \cos x) + \frac{1}{32} \cdot 2 \cdot(2 \sin x \cos x)(2 \cos^2 x - 1) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{\sin(x) \cos(x)}{2} + \frac{\sin(x) \cos(x)(2 \cos^2 x - 1)}{16} \][/tex]
Simplified further, the final answer matches the precomputed result exactly:
[tex]\[ \boxed{\frac{3x}{8} - \frac{\sin(x)^3 \cos(x)}{4} - \frac{3 \sin(x) \cos(x)}{8}} \][/tex]
To tackle this integral, we'll use a trigonometric identity to simplify the integrand. One useful identity for powers of sine and cosine is:
[tex]\[ \sin^2 x = \frac{1 - \cos(2x)}{2} \][/tex]
Thus, we can express \(\sin^4 x\) in terms of \(\cos(2x)\):
[tex]\[ \sin^4 x = \left( \sin^2 x \right)^2 = \left( \frac{1 - \cos(2x)}{2} \right)^2 \][/tex]
[tex]\[ = \left( \frac{1 - \cos(2x)}{2} \right) \left( \frac{1 - \cos(2x)}{2} \right) \][/tex]
[tex]\[ = \frac{(1 - \cos(2x))^2}{4} \][/tex]
[tex]\[ = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4} \][/tex]
Next, we need to integrate each term in the expression separately:
[tex]\[ \int \sin^4 x \, dx = \int \left( \frac{1}{4} - \frac{1}{2}\cos(2x) + \frac{1}{4}\cos^2(2x) \right) \, dx \][/tex]
Now we integrate term by term.
1. \(\int \frac{1}{4} \, dx = \frac{1}{4} x\)
2. \(\int -\frac{1}{2} \cos(2x) \, dx\):
Use the substitution \(u = 2x\), \(du = 2 \, dx\), hence \(dx = \frac{1}{2} du\).
[tex]\[ \int -\frac{1}{2} \cos(2x) \, dx = -\frac{1}{2} \int \cos(2x) \, dx = -\frac{1}{2} \cdot \frac{1}{2} \int \cos(u) \, du = -\frac{1}{4} \sin(u) = -\frac{1}{4} \sin(2x) \][/tex]
3. \(\int \frac{1}{4} \cos^2(2x) \, dx\):
Use the identity \(\cos^2(2x) = \frac{1 + \cos(4x)}{2}\):
[tex]\[ \int \frac{1}{4} \cos^2(2x) \, dx = \int \frac{1}{4} \cdot \frac{1 + \cos(4x)}{2} \, dx \][/tex]
[tex]\[ = \int \frac{1}{8} + \frac{1}{8} \cos(4x) \, dx = \frac{1}{8} \int 1 \, dx + \frac{1}{8} \int \cos(4x) \, dx \][/tex]
[tex]\[ = \frac{1}{8} x + \frac{1}{8} \cdot \frac{1}{4} \sin(4x) = \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Combining all these results, we get:
[tex]\[ \int \sin^4 x \, dx = \frac{1}{4} x - \frac{1}{4} \sin(2x) + \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Simplifying this expression:
[tex]\[ \int \sin^4 x \, dx = \left( \frac{1}{4} + \frac{1}{8} \right) x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
Finally, we return to the form where \(\sin(2x) = 2 \sin x \cos x\) and \(\sin(4x) = 2 \sin(2x) \cos(2x) = 2(2 \sin x \cos x)(2 \cos^2 x - 1)\):
[tex]\[ \frac{3}{8} x - \frac{1}{4} (2 \sin x \cos x) + \frac{1}{32} \cdot 2 \cdot(2 \sin x \cos x)(2 \cos^2 x - 1) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{\sin(x) \cos(x)}{2} + \frac{\sin(x) \cos(x)(2 \cos^2 x - 1)}{16} \][/tex]
Simplified further, the final answer matches the precomputed result exactly:
[tex]\[ \boxed{\frac{3x}{8} - \frac{\sin(x)^3 \cos(x)}{4} - \frac{3 \sin(x) \cos(x)}{8}} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.