IDNLearn.com offers a user-friendly platform for finding and sharing knowledge. Our community is here to provide detailed and trustworthy answers to any questions you may have.

Nitrogen reacts with hydrogen to form ammonia according to the equation below.

[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]

Standard Enthalpies of Formation:

[tex]\[
\begin{tabular}{|c|c|}
\hline
Substance & [tex]$\Delta H_f \ (kJ/mol)$[/tex] \\
\hline
[tex]$C_2H_2(g)$[/tex] & -26.7 \\
\hline
[tex]$NH_3(g)$[/tex] & -46.19 \\
\hline
[tex]$HBr(g)$[/tex] & 236.23 \\
\hline
[tex]$HCl(g)$[/tex] & -92.30 \\
\hline
[tex]$HF(g)$[/tex] & -268.6 \\
\hline
[tex]$HI(g)$[/tex] & 25.9 \\
\hline
[tex]$NaCl(s)$[/tex] & -411.0 \\
\hline
\end{tabular}
\][/tex]

Based on the equation and the information in the table, what is the enthalpy of the reaction?

[tex]\[ \Delta H_{\text{reaction}} = -46.19 \ kJ \][/tex]


Sagot :

To determine the enthalpy change of the reaction (\(\Delta H_{\text{rxn}}\)) for the formation of ammonia from nitrogen and hydrogen, we can use the concept of standard enthalpies of formation (\(\Delta H_f^\circ\)).

The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2 (g) + 3\text{H}_2 (g) \rightarrow 2\text{NH}_3 (g) \][/tex]

The standard enthalpy change of the reaction (\(\Delta H_{\text{rxn}}\)) can be determined using the standard enthalpies of formation of the reactants and products. This is given by the formula:
[tex]\[ \Delta H_{\text{rxn}}^\circ = \sum \Delta H_f^\circ (\text{products}) - \sum \Delta H_f^\circ (\text{reactants}) \][/tex]

From the table of standard enthalpies of formation:
- \(\Delta H_f^\circ (\text{NH}_3(g)) = -46.19 \text{ kJ/mol}\)
- \(\Delta H_f^\circ (\text{N}_2(g)) = 0 \text{ kJ/mol}\) (since nitrogen is in its elemental form)
- \(\Delta H_f^\circ (\text{H}_2(g)) = 0 \text{ kJ/mol}\) (since hydrogen is in its elemental form)

Now, applying these values to the reaction:

Products:
[tex]\[ 2\text{NH}_3(g) \][/tex]
Since there are 2 moles of \(\text{NH}_3\), the total enthalpy contribution from \(\text{NH}_3\) is:
[tex]\[ 2 \times \Delta H_f^\circ (\text{NH}_3) = 2 \times (-46.19 \text{ kJ/mol}) \][/tex]

Reactants:
[tex]\[ \text{N}_2(g) + 3\text{H}_2(g) \][/tex]
The enthalpy contribution from \(\text{N}_2\) and \(\text{H}_2\) is zero since their standard enthalpies of formation are zero:
[tex]\[ \Delta H_f^\circ (\text{N}_2) + 3 \times \Delta H_f^\circ (\text{H}_2) = 0 + 3 \times 0 = 0 \][/tex]

Putting it all together:
[tex]\[ \Delta H_{\text{rxn}}^\circ = [2 \times (-46.19 \text{ kJ/mol})] - [0 + 0] \][/tex]
[tex]\[ \Delta H_{\text{rxn}}^\circ = -92.38 \text{ kJ} \][/tex]

Therefore, the enthalpy change for the reaction is:
[tex]\[ \Delta H_{\text{rxn}} = -92.38 \text{ kJ} \][/tex]