IDNLearn.com makes it easy to get reliable answers from knowledgeable individuals. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
To solve for \(\cos (\alpha + \beta)\), \(\sin (\alpha + \beta)\), and \(\tan (\alpha + \beta)\) given \(\sin (\alpha)=\frac{4}{5}\) where \(\alpha\) lies in quadrant I, and \(\sin (\beta)=\frac{24}{25}\) where \(\beta\) lies in quadrant II, let's proceed step-by-step.
### Step 1: Finding \(\cos(\alpha)\)
Since \(\alpha\) is in quadrant I, \(\cos(\alpha)\) will be positive.
We have:
[tex]\[ \sin(\alpha) = \frac{4}{5} \][/tex]
Using the Pythagorean identity \(\sin^2(\alpha) + \cos^2(\alpha) = 1\):
[tex]\[ \cos^2(\alpha) = 1 - \sin^2(\alpha) \][/tex]
[tex]\[ \cos^2(\alpha) = 1 - \left( \frac{4}{5} \right)^2 \][/tex]
[tex]\[ \cos^2(\alpha) = 1 - \frac{16}{25} \][/tex]
[tex]\[ \cos^2(\alpha) = \frac{9}{25} \][/tex]
[tex]\[ \cos(\alpha) = \sqrt{\frac{9}{25}} \][/tex]
[tex]\[ \cos(\alpha) = \frac{3}{5} \][/tex]
### Step 2: Finding \(\cos(\beta)\)
Since \(\beta\) is in quadrant II, \(\cos(\beta)\) will be negative.
We have:
[tex]\[ \sin(\beta) = \frac{24}{25} \][/tex]
Using the Pythagorean identity \(\sin^2(\beta) + \cos^2(\beta) = 1\):
[tex]\[ \cos^2(\beta) = 1 - \sin^2(\beta) \][/tex]
[tex]\[ \cos^2(\beta) = 1 - \left( \frac{24}{25} \right)^2 \][/tex]
[tex]\[ \cos^2(\beta) = 1 - \frac{576}{625} \][/tex]
[tex]\[ \cos^2(\beta) = \frac{49}{625} \][/tex]
[tex]\[ \cos(\beta) = -\sqrt{\frac{49}{625}} \][/tex]
[tex]\[ \cos(\beta) = -\frac{7}{25} \][/tex]
### Step 3: Using Angle Addition Formulas
#### Finding \(\cos (\alpha + \beta)\)
[tex]\[ \cos (\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \][/tex]
Substitute the values for \(\cos(\alpha)\), \(\cos(\beta)\), \(\sin(\alpha)\), and \(\sin(\beta)\):
[tex]\[ \cos (\alpha + \beta) = \left( \frac{3}{5} \right) \left( -\frac{7}{25} \right) - \left( \frac{4}{5} \right) \left( \frac{24}{25} \right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = \left( \frac{3 \times -7}{125} \right) - \left( \frac{4 \times 24}{125} \right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-21}{125} - \frac{96}{125} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-117}{125} \][/tex]
[tex]\[ \cos (\alpha + \beta) = -0.936 \][/tex]
So,
[tex]\[ \cos (\alpha + \beta) = - \boxed{0.936} \][/tex]
#### Finding \(\sin (\alpha + \beta)\)
[tex]\[ \sin (\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) \][/tex]
Substitute the values for \(\cos(\alpha)\), \(\cos(\beta)\), \(\sin(\alpha)\), and \(\sin(\beta)\):
[tex]\[ \sin (\alpha + \beta) = \left( \frac{4}{5} \right) \left( -\frac{7}{25} \right) + \left( \frac{3}{5} \right) \left( \frac{24}{25} \right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \left( \frac{4 \times -7}{125} \right) + \left( \frac{3 \times 24}{125} \right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{-28}{125} + \frac{72}{125} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{44}{125} \][/tex]
[tex]\[ \sin (\alpha + \beta) = 0.352 \][/tex]
So,
[tex]\[ \sin (\alpha + \beta) = \boxed{0.352} \][/tex]
#### Finding \(\tan (\alpha + \beta)\)
[tex]\[ \tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} \][/tex]
Substitute the values for \(\sin(\alpha + \beta)\) and \(\cos(\alpha + \beta)\):
[tex]\[ \tan (\alpha + \beta) = \frac{0.352}{-0.936} \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.376 \][/tex]
So,
[tex]\[ \tan (\alpha + \beta) = - \boxed{0.376} \][/tex]
These values match the results obtained from calculations:
[tex]\[ \cos (\alpha + \beta) = -0.936 \][/tex]
[tex]\[ \sin (\alpha + \beta) = 0.352 \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.376 \][/tex]
### Step 1: Finding \(\cos(\alpha)\)
Since \(\alpha\) is in quadrant I, \(\cos(\alpha)\) will be positive.
We have:
[tex]\[ \sin(\alpha) = \frac{4}{5} \][/tex]
Using the Pythagorean identity \(\sin^2(\alpha) + \cos^2(\alpha) = 1\):
[tex]\[ \cos^2(\alpha) = 1 - \sin^2(\alpha) \][/tex]
[tex]\[ \cos^2(\alpha) = 1 - \left( \frac{4}{5} \right)^2 \][/tex]
[tex]\[ \cos^2(\alpha) = 1 - \frac{16}{25} \][/tex]
[tex]\[ \cos^2(\alpha) = \frac{9}{25} \][/tex]
[tex]\[ \cos(\alpha) = \sqrt{\frac{9}{25}} \][/tex]
[tex]\[ \cos(\alpha) = \frac{3}{5} \][/tex]
### Step 2: Finding \(\cos(\beta)\)
Since \(\beta\) is in quadrant II, \(\cos(\beta)\) will be negative.
We have:
[tex]\[ \sin(\beta) = \frac{24}{25} \][/tex]
Using the Pythagorean identity \(\sin^2(\beta) + \cos^2(\beta) = 1\):
[tex]\[ \cos^2(\beta) = 1 - \sin^2(\beta) \][/tex]
[tex]\[ \cos^2(\beta) = 1 - \left( \frac{24}{25} \right)^2 \][/tex]
[tex]\[ \cos^2(\beta) = 1 - \frac{576}{625} \][/tex]
[tex]\[ \cos^2(\beta) = \frac{49}{625} \][/tex]
[tex]\[ \cos(\beta) = -\sqrt{\frac{49}{625}} \][/tex]
[tex]\[ \cos(\beta) = -\frac{7}{25} \][/tex]
### Step 3: Using Angle Addition Formulas
#### Finding \(\cos (\alpha + \beta)\)
[tex]\[ \cos (\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \][/tex]
Substitute the values for \(\cos(\alpha)\), \(\cos(\beta)\), \(\sin(\alpha)\), and \(\sin(\beta)\):
[tex]\[ \cos (\alpha + \beta) = \left( \frac{3}{5} \right) \left( -\frac{7}{25} \right) - \left( \frac{4}{5} \right) \left( \frac{24}{25} \right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = \left( \frac{3 \times -7}{125} \right) - \left( \frac{4 \times 24}{125} \right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-21}{125} - \frac{96}{125} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-117}{125} \][/tex]
[tex]\[ \cos (\alpha + \beta) = -0.936 \][/tex]
So,
[tex]\[ \cos (\alpha + \beta) = - \boxed{0.936} \][/tex]
#### Finding \(\sin (\alpha + \beta)\)
[tex]\[ \sin (\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) \][/tex]
Substitute the values for \(\cos(\alpha)\), \(\cos(\beta)\), \(\sin(\alpha)\), and \(\sin(\beta)\):
[tex]\[ \sin (\alpha + \beta) = \left( \frac{4}{5} \right) \left( -\frac{7}{25} \right) + \left( \frac{3}{5} \right) \left( \frac{24}{25} \right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \left( \frac{4 \times -7}{125} \right) + \left( \frac{3 \times 24}{125} \right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{-28}{125} + \frac{72}{125} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{44}{125} \][/tex]
[tex]\[ \sin (\alpha + \beta) = 0.352 \][/tex]
So,
[tex]\[ \sin (\alpha + \beta) = \boxed{0.352} \][/tex]
#### Finding \(\tan (\alpha + \beta)\)
[tex]\[ \tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} \][/tex]
Substitute the values for \(\sin(\alpha + \beta)\) and \(\cos(\alpha + \beta)\):
[tex]\[ \tan (\alpha + \beta) = \frac{0.352}{-0.936} \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.376 \][/tex]
So,
[tex]\[ \tan (\alpha + \beta) = - \boxed{0.376} \][/tex]
These values match the results obtained from calculations:
[tex]\[ \cos (\alpha + \beta) = -0.936 \][/tex]
[tex]\[ \sin (\alpha + \beta) = 0.352 \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.376 \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.