From beginner to expert, IDNLearn.com has answers for everyone. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.
Sagot :
To determine the gravitational force between the two asteroids using Newton's law of gravitation, we will follow these steps:
1. Identify the given values:
- Mass of the first asteroid, \( m_1 = 3.45 \times 10^3 \, \text{kg} \)
- Mass of the second asteroid, \( m_2 = 6.06 \times 10^4 \, \text{kg} \)
- Distance between the asteroids, \( r = 7200 \, \text{m} \)
- Gravitational constant, \( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)
2. Write down Newton's law of gravitation formula:
[tex]\[ F_{\text{gravity}} = \frac{G m_1 m_2}{r^2} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \times (3.45 \times 10^3 \, \text{kg}) \times (6.06 \times 10^4 \, \text{kg})}{(7200 \, \text{m})^2} \][/tex]
4. Calculations step-by-step:
a. Calculate the product of \( G \) and the masses:
[tex]\[ (6.67 \times 10^{-11}) \times (3.45 \times 10^3) \times (6.06 \times 10^4) \][/tex]
After calculating this, you will get an intermediate result.
b. Calculate the square of the distance:
[tex]\[ (7200)^2 = 51840000 \][/tex]
5. Divide the product from step 4a by the result from step 4b to find \( F_{\text{gravity}} \):
After performing the division, the result is:
[tex]\[ F_{\text{gravity}} \approx 2.690001736111111 \times 10^{-10} \, \text{N} \][/tex]
6. Compare this result with the given choices:
- A. \( 4.03 \, \text{N} \)
- B. \( 2.69 \times 10^{-10} \, \text{N} \)
- C. \( 3.38 \times 10^{32} \, \text{N} \)
- D. \( 1.93 \times 10^{-6} \, \text{N} \)
The closest and correct answer is:
B. \( 2.69 \times 10^{-10} \, \text{N} \)
Hence, the gravitational force between the two asteroids is [tex]\( 2.69 \times 10^{-10} \, \text{N} \)[/tex].
1. Identify the given values:
- Mass of the first asteroid, \( m_1 = 3.45 \times 10^3 \, \text{kg} \)
- Mass of the second asteroid, \( m_2 = 6.06 \times 10^4 \, \text{kg} \)
- Distance between the asteroids, \( r = 7200 \, \text{m} \)
- Gravitational constant, \( G = 6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)
2. Write down Newton's law of gravitation formula:
[tex]\[ F_{\text{gravity}} = \frac{G m_1 m_2}{r^2} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ F_{\text{gravity}} = \frac{(6.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) \times (3.45 \times 10^3 \, \text{kg}) \times (6.06 \times 10^4 \, \text{kg})}{(7200 \, \text{m})^2} \][/tex]
4. Calculations step-by-step:
a. Calculate the product of \( G \) and the masses:
[tex]\[ (6.67 \times 10^{-11}) \times (3.45 \times 10^3) \times (6.06 \times 10^4) \][/tex]
After calculating this, you will get an intermediate result.
b. Calculate the square of the distance:
[tex]\[ (7200)^2 = 51840000 \][/tex]
5. Divide the product from step 4a by the result from step 4b to find \( F_{\text{gravity}} \):
After performing the division, the result is:
[tex]\[ F_{\text{gravity}} \approx 2.690001736111111 \times 10^{-10} \, \text{N} \][/tex]
6. Compare this result with the given choices:
- A. \( 4.03 \, \text{N} \)
- B. \( 2.69 \times 10^{-10} \, \text{N} \)
- C. \( 3.38 \times 10^{32} \, \text{N} \)
- D. \( 1.93 \times 10^{-6} \, \text{N} \)
The closest and correct answer is:
B. \( 2.69 \times 10^{-10} \, \text{N} \)
Hence, the gravitational force between the two asteroids is [tex]\( 2.69 \times 10^{-10} \, \text{N} \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.