IDNLearn.com: Where curiosity meets clarity and questions find their answers. Our community is here to provide detailed and trustworthy answers to any questions you may have.

44. The matrix [tex]$\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$[/tex] is

(a) orthogonal
(b) Hermitian
(c) symmetric
(d) antisymmetric


Sagot :

Let's analyze the given matrix:

[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

We will examine whether this matrix is orthogonal, hermitian, symmetric, or antisymmetric.

1. Orthogonal Matrix:

A matrix \( A \) is orthogonal if \( A \cdot A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix.

Calculate the transpose of \( A \):

[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

Now, compute \( A \cdot A^T \):

[tex]\[ A \cdot A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \][/tex]

Since \( A \cdot A^T = I \), \( A \) is orthogonal.

2. Hermitian Matrix:

A matrix \( A \) is hermitian if \( A = A^ \), where \( A^ \) is the conjugate transpose of \( A \). For real matrices, hermitian is simply the same as symmetric.

For our real matrix \( A \):

[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

Clearly, \( A \neq A^T \), so \( A \) is not hermitian.

3. Symmetric Matrix:

A matrix \( A \) is symmetric if \( A = A^T \).

As shown above,

[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

Since \( A \neq A^T \), \( A \) is not symmetric.

4. Antisymmetric Matrix:

A matrix \( A \) is antisymmetric (or skew-symmetric) if \( A = -A^T \).

Calculate \(-A^T\):

[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]

Comparing \( A \) with \(-A^T\):

[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]

Clearly, \( A \neq -A^T \) due to the \(1\) at the (3, 3) position. Therefore, \( A \) is not antisymmetric.

Summarizing, the matrix

[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

is:
(a) orthogonal: True
(b) hermitian: False
(c) symmetric: False
(d) antisymmetric: False

Thus, the correct answer is:
[tex]\[ \boxed{a} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.