IDNLearn.com is committed to providing high-quality answers to your questions. Discover reliable answers to your questions with our extensive database of expert knowledge.
Sagot :
To determine which set of points forms the vertices of a right triangle, we need to verify if these points satisfy the Pythagorean theorem: \(a^2 + b^2 = c^2\), for some permutation of sides \(a\), \(b\), and \(c\), where \(c\) is the hypotenuse.
### Set 1: \(A(-1,-3), B(4,-3), C(2,-1)\)
1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(4 - (-1))^2 + ((-3) - (-3))^2} = \sqrt{5^2 + 0} = 5\)
- \(BC\): \(\sqrt{(2 - 4)^2 + ((-1) - (-3))^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} \approx 2\sqrt{2}\)
- \(CA\): \(\sqrt{(2 - (-1))^2 + ((-1) - (-3))^2} = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}\)
2. Check for the Pythagorean theorem:
- \(5^2 + (\sqrt{8})^2 = 25 + 8 \neq 13\)
- \(5^2 + (\sqrt{13})^2 = 25 + 13 \neq 8\)
- \((\sqrt{8})^2 + (\sqrt{13})^2 = 8 + 13 \neq 25\)
This set does not form a right triangle.
### Set 2: \(A(-1,1), B(3,5), C(4,-4)\)
1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(3 - (-1))^2 + (5 - 1)^2} = \sqrt{4^2 + 4^2} = \sqrt{16 + 16} = 4\sqrt{2}\)
- \(BC\): \(\sqrt{(4 - 3)^2 + (-4 - 5)^2} = \sqrt{1^2 + (-9)^2} = \sqrt{1 + 81} = \sqrt{82}\)
- \(CA\): \(\sqrt{(4 - (-1))^2 + (-4 - 1)^2} = \sqrt{5^2 + (-5)^2} = \sqrt{25 + 25} = 5\sqrt{2}\)
2. Check for the Pythagorean theorem:
- \((4\sqrt{2})^2 + (5\sqrt{2})^2 = 32 + 50 = 82\)
- \(\sqrt{82}^2 = 82\)
This set satisfies the Pythagorean theorem, implying it forms a right triangle.
### Set 3: \(A(-1,3), B(-4,-3), C(-4,1)\)
1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(-4 - (-1))^2 + (-3 - 3)^2} = \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(BC\): \(\sqrt{(-4 - (-4))^2 + (1 - (-3))^2} = \sqrt{0 + 4^2} = 4\)
- \(CA\): \(\sqrt{(-4 - (-1))^2 + (1 - 3)^2} = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}\)
2. Check for the Pythagorean theorem:
- \((3\sqrt{5})^2 + 4^2 = 45 + 16 \neq 13\)
- \((4)^2 + (\sqrt{13})^2 = 16 + 13 \neq 45\)
- \((3\sqrt{5})^2 + (\sqrt{13})^2 = 45 + 13 \neq 16\)
This set does not form a right triangle.
### Set 4: \(A(-2,2), B(1,-4), C(4,2)\)
1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(1 - (-2))^2 + (-4 - 2)^2} = \sqrt{3^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(BC\): \(\sqrt{(4 - 1)^2 + (2 - (-4))^2} = \sqrt{3^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(CA\): \(\sqrt{(4 - (-2))^2 + (2 - 2)^2} = \sqrt{6^2 + 0} = 6\)
2. Check for the Pythagorean theorem:
- \((3\sqrt{5})^2 + 6^2 = 45 + 36 \neq 45\)
- \((3\sqrt{5})^2 + (3\sqrt{5})^2 = 45 + 45 \neq 36\)
- \(6^2 + (3\sqrt{5})^2 = 36 + 45 \neq 45\)
This set does not form a right triangle.
### Conclusion:
The second set of points, [tex]\(A(-1,1), B(3,5), C(4,-4)\)[/tex], is the only set that forms the vertices of a right triangle.
### Set 1: \(A(-1,-3), B(4,-3), C(2,-1)\)
1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(4 - (-1))^2 + ((-3) - (-3))^2} = \sqrt{5^2 + 0} = 5\)
- \(BC\): \(\sqrt{(2 - 4)^2 + ((-1) - (-3))^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} \approx 2\sqrt{2}\)
- \(CA\): \(\sqrt{(2 - (-1))^2 + ((-1) - (-3))^2} = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}\)
2. Check for the Pythagorean theorem:
- \(5^2 + (\sqrt{8})^2 = 25 + 8 \neq 13\)
- \(5^2 + (\sqrt{13})^2 = 25 + 13 \neq 8\)
- \((\sqrt{8})^2 + (\sqrt{13})^2 = 8 + 13 \neq 25\)
This set does not form a right triangle.
### Set 2: \(A(-1,1), B(3,5), C(4,-4)\)
1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(3 - (-1))^2 + (5 - 1)^2} = \sqrt{4^2 + 4^2} = \sqrt{16 + 16} = 4\sqrt{2}\)
- \(BC\): \(\sqrt{(4 - 3)^2 + (-4 - 5)^2} = \sqrt{1^2 + (-9)^2} = \sqrt{1 + 81} = \sqrt{82}\)
- \(CA\): \(\sqrt{(4 - (-1))^2 + (-4 - 1)^2} = \sqrt{5^2 + (-5)^2} = \sqrt{25 + 25} = 5\sqrt{2}\)
2. Check for the Pythagorean theorem:
- \((4\sqrt{2})^2 + (5\sqrt{2})^2 = 32 + 50 = 82\)
- \(\sqrt{82}^2 = 82\)
This set satisfies the Pythagorean theorem, implying it forms a right triangle.
### Set 3: \(A(-1,3), B(-4,-3), C(-4,1)\)
1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(-4 - (-1))^2 + (-3 - 3)^2} = \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(BC\): \(\sqrt{(-4 - (-4))^2 + (1 - (-3))^2} = \sqrt{0 + 4^2} = 4\)
- \(CA\): \(\sqrt{(-4 - (-1))^2 + (1 - 3)^2} = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}\)
2. Check for the Pythagorean theorem:
- \((3\sqrt{5})^2 + 4^2 = 45 + 16 \neq 13\)
- \((4)^2 + (\sqrt{13})^2 = 16 + 13 \neq 45\)
- \((3\sqrt{5})^2 + (\sqrt{13})^2 = 45 + 13 \neq 16\)
This set does not form a right triangle.
### Set 4: \(A(-2,2), B(1,-4), C(4,2)\)
1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(1 - (-2))^2 + (-4 - 2)^2} = \sqrt{3^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(BC\): \(\sqrt{(4 - 1)^2 + (2 - (-4))^2} = \sqrt{3^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(CA\): \(\sqrt{(4 - (-2))^2 + (2 - 2)^2} = \sqrt{6^2 + 0} = 6\)
2. Check for the Pythagorean theorem:
- \((3\sqrt{5})^2 + 6^2 = 45 + 36 \neq 45\)
- \((3\sqrt{5})^2 + (3\sqrt{5})^2 = 45 + 45 \neq 36\)
- \(6^2 + (3\sqrt{5})^2 = 36 + 45 \neq 45\)
This set does not form a right triangle.
### Conclusion:
The second set of points, [tex]\(A(-1,1), B(3,5), C(4,-4)\)[/tex], is the only set that forms the vertices of a right triangle.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.