Find trusted answers to your questions with the help of IDNLearn.com's knowledgeable community. Discover trustworthy solutions to your questions quickly and accurately with help from our dedicated community of experts.

Find the exact value of the expression whenever it is defined. (If an answer is undefined, enter UNDEFINED.)

(a) [tex]\arcsin \left(\sin \frac{13 \pi}{12}\right)[/tex]
[tex]\square[/tex]

(b) [tex]\arccos \left(\cos \frac{8 \pi}{5}\right)[/tex]
[tex]\square[/tex]

(c) [tex]\arctan \left(\tan \frac{5 \pi}{4}\right)[/tex]
[tex]\square[/tex]


Sagot :

Let's tackle each part of the problem step-by-step:

### Part (a)
To find the value of \(\arcsin\left(\sin\left(\frac{13\pi}{12}\right)\right)\), we need to consider the properties of the sine and arcsine functions.

The sine function, \(\sin(\theta)\), is periodic with a period of \(2\pi\). The arcsine function, \(\arcsin(x)\), is the inverse of the sine function restricted to the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\).

Given \(\theta = \frac{13\pi}{12}\), we observe that this angle is outside the principal range of \([- \frac{\pi}{2}, \frac{\pi}{2}]\). To bring it within the principal range, we use the property that \(\sin(\theta) = \sin(\pi - \theta)\).

For \(\theta = \frac{13\pi}{12}\):
[tex]\[ \theta = \frac{13\pi}{12} = \pi + \left(\frac{\pi}{12} - \pi\right) \][/tex]

Thus, we get:
[tex]\[ \sin\left(\frac{13\pi}{12}\right) = \sin\left(\frac{13\pi}{12} - \pi\right) = \sin\left(-\frac{\pi}{12}\right) \][/tex]

Since \(\sin(-x) = -\sin(x)\), we have:
[tex]\[ \sin\left(-\frac{\pi}{12}\right) = -\sin\left(\frac{\pi}{12}\right) \][/tex]

Now, applying the arcsin function:
[tex]\[ \arcsin\left(\sin\left(\frac{13\pi}{12}\right)\right) = \arcsin\left(-\sin\left(\frac{\pi}{12}\right)\right) = -\frac{\pi}{12} \][/tex]

Converting \(-\frac{\pi}{12}\) to a numerical value, we get:
[tex]\[ \boxed{-0.26179938779914946} \][/tex]

### Part (b)
To find \(\arccos\left(\cos\left(\frac{8\pi}{5}\right)\right)\), again consider the properties of the cosine and arccosine functions.

The cosine function, \(\cos(\theta)\), is periodic with a period of \(2\pi\). The arccosine function, \(\arccos(x)\), is the inverse of the cosine function restricted to the interval \([0, \pi]\).

Given \(\theta = \frac{8\pi}{5}\), this angle is outside the principal range of \([0, \pi]\). We use the property that \(\cos(\theta) = \cos(2\pi - \theta)\).

For \(\theta = \frac{8\pi}{5}\):
[tex]\[ \theta = \frac{8\pi}{5} = 2\pi - \left(2\pi - \frac{8\pi}{5}\right) = 2\pi - \frac{8\pi}{5} \][/tex]

Thus:
[tex]\[ \cos\left(\frac{8\pi}{5}\right) = \cos\left(2\pi - \frac{8\pi}{5}\right) = \cos\left(\frac{2\pi}{5}\right) \][/tex]

So the value is:
[tex]\[ \arccos\left(\cos\left(\frac{8\pi}{5}\right)\right) = \arccos\left(\cos\left(\frac{2\pi}{5}\right)\right) = \frac{2\pi}{5} \][/tex]

Converting \(\frac{2\pi}{5}\) to a numerical value, we get:
[tex]\[ \boxed{1.2566370614359175} \][/tex]

### Part (c)
To find \(\arctan\left(\tan\left(\frac{5\pi}{4}\right)\right)\), we consider the properties of the tangent and arctangent functions.

The tangent function, \(\tan(\theta)\), is periodic with a period of \(\pi\). The arctangent function, \(\arctan(x)\), is the inverse of the tangent function restricted to the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\).

For \(\theta = \frac{5\pi}{4}\), we bring it within the principal range. Observe:
[tex]\[ \theta = \frac{5\pi}{4} = \pi + \left(\frac{\pi}{4}\right) = \pi + \frac{\pi}{4} \][/tex]

Thus,
[tex]\[ \tan\left(\frac{5\pi}{4}\right) = \tan\left(\frac{5\pi}{4} - \pi\right) = \tan\left(\frac{\pi}{4}\right) \][/tex]

So,
[tex]\[ \arctan\left(\tan\left(\frac{5\pi}{4}\right)\right) = \arctan\left(\tan\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4} \][/tex]

Converting \(\frac{\pi}{4}\) to a numerical value, we get:
[tex]\[ \boxed{0.7853981633974482} \][/tex]

Thus, the values are:
[tex]\[ \boxed{-0.26179938779914946}, \boxed{1.2566370614359175}, \boxed{0.7853981633974482} \][/tex]