IDNLearn.com provides a seamless experience for finding the answers you need. Ask anything and receive well-informed answers from our community of experienced professionals.

Use inverse trigonometric functions to find the solutions of the equation that are in the given interval. Approximate the solutions to four decimal places.

[tex]\[ \cos^2 x + 3 \cos x - 2 = 0 \quad \text{for} \quad [0, 2\pi) \][/tex]

[tex]\[ x = \boxed{\text{smaller value}} \][/tex]

[tex]\[ x = \boxed{\text{larger value}} \][/tex]


Sagot :

Certainly! Let’s solve the given equation \(\cos^2 x + 3 \cos x - 2 = 0\) in the interval \([0, 2\pi)\).

### Step-by-Step Solution:

1. Substitute \( y = \cos x \):
The equation \(\cos^2 x + 3 \cos x - 2 = 0\) can be rewritten as:
[tex]\[ y^2 + 3y - 2 = 0 \][/tex]
where \( y = \cos x \).

2. Solve the Quadratic Equation:
We need to find the roots of the quadratic equation \( y^2 + 3y - 2 = 0 \).
The quadratic formula is given by:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation \( y^2 + 3y - 2 = 0 \), the coefficients are \(a = 1\), \(b = 3\), and \(c = -2\). Plugging these into the formula, we get:
[tex]\[ y = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} \][/tex]
[tex]\[ y = \frac{-3 \pm \sqrt{9 + 8}}{2} \][/tex]
[tex]\[ y = \frac{-3 \pm \sqrt{17}}{2} \][/tex]

3. Find the Roots:
The roots of the equation are:
[tex]\[ y_1 = \frac{-3 + \sqrt{17}}{2} \][/tex]
and
[tex]\[ y_2 = \frac{-3 - \sqrt{17}}{2} \][/tex]

Numerically approximating these roots:
[tex]\[ y_1 \approx \frac{-3 + 4.1231}{2} \approx \frac{1.1231}{2} \approx 0.5616 \][/tex]
[tex]\[ y_2 \approx \frac{-3 - 4.1231}{2} \approx \frac{-7.1231}{2} \approx -3.5616 \][/tex]

4. Finding \(x\) such that \(\cos x = y_1\) or \(\cos x = y_2\):
Note that \(\cos x\) ranges from \(-1\) to \(1\). Since \( y_2 = -3.5616 \) is outside this range, it is not a valid solution. We only consider \( y = 0.5616 \).

5. Use the Inverse Cosine Function:
To find \(x\) such that \( \cos x = 0.5616 \):
[tex]\[ x = \cos^{-1}(0.5616) \][/tex]
Using a calculator, we approximate:
[tex]\[ x_1 \approx \cos^{-1}(0.5616) \approx 0.9749 \][/tex]

6. Considering all possible \(x\) within \([0, 2\pi)\):
The cosine function is positive in the first and fourth quadrants:

- First quadrant solution: \( x_1 \approx 0.9749 \)
- Third quadrant solution: \( x_2 \approx 2\pi - x_1 \approx 2\pi - 0.9749 \approx 5.3082 \)

Thus, the solutions are:

- \( x \approx 0.9749 \) (smaller value)
- \( x \approx 5.3082 \) (larger value)

To four decimal places:
[tex]\[ x_1 \approx 0.9749 \][/tex]
[tex]\[ x_2 \approx 5.3082 \][/tex]