IDNLearn.com is designed to help you find reliable answers quickly and easily. Ask your questions and get detailed, reliable answers from our community of knowledgeable experts.
Sagot :
Certainly! Let's address each part of the question step-by-step:
### 2.1 Solve for \( x \) and \( y \) using complex numbers:
The given equation is:
[tex]\[ \left|\begin{array}{cc} x j & y j \\ -3 & -2 \end{array}\right| = \left|\begin{array}{cc} x - y & j \\ -4 & 2 \end{array}\right| \][/tex]
We need to evaluate the determinants of both matrices and then equate them.
Left-hand side (LHS):
[tex]\[ \left|\begin{array}{cc} x j & y j \\ -3 & -2 \end{array}\right| \][/tex]
To find the determinant:
[tex]\[ = (x j)(-2) - (y j)(-3) \][/tex]
[tex]\[ = -2x j + 3y j \][/tex]
[tex]\[ = j(-2x + 3y) \][/tex]
Right-hand side (RHS):
[tex]\[ \left|\begin{array}{cc} x - y & j \\ -4 & 2 \end{array}\right| \][/tex]
To find the determinant:
[tex]\[ = (x - y)(2) - (j)(-4) \][/tex]
[tex]\[ = 2(x - y) + 4j \][/tex]
Equate the determinants:
[tex]\[ j(-2x + 3y) = 2(x - y) + 4j \][/tex]
Separate the real and imaginary parts:
For imaginary parts:
[tex]\[ -2x + 3y = 4 \][/tex]
For real parts:
[tex]\[ 2(x - y) = 0 \][/tex]
[tex]\[ x - y = 0 \][/tex]
[tex]\[ x = y \][/tex]
Now substitute \( x = y \) into the imaginary parts equation:
[tex]\[ -2x + 3x = 4 \][/tex]
[tex]\[ x = 4 \][/tex]
Since \( x = y \), we also have \( y = 4 \).
Thus, the solutions are:
[tex]\[ x = 4 \][/tex]
[tex]\[ y = 4 \][/tex]
### 2.2 Given \( z_1 = 4 \breve{30^{\circ}} \) and \( z_2 = 2 \breve{60^{\circ}} \), determine:
#### 2.2.1 \( z_1 \cdot z_2 \)
To multiply two complex numbers in polar form, we multiply their moduli and add their angles.
- Modulus of \(z_1 \cdot z_2 \):
[tex]\[ |z_1| \cdot |z_2| = 4 \cdot 2 = 8 \][/tex]
- Angle of \(z_1 \cdot z_2 \):
[tex]\[ \arg(z_1) + \arg(z_2) = 30^\circ + 60^\circ = 90^\circ \][/tex]
So:
[tex]\[ z_1 \cdot z_2 = 8 \breve{90^\circ} \][/tex]
#### 2.2.2 \(\frac{z_1}{z_2}\)
To divide two complex numbers in polar form, we divide their moduli and subtract their angles.
- Modulus of \(\frac{z_1}{z_2} \):
[tex]\[ \frac{|z_1|}{|z_2|} = \frac{4}{2} = 2 \][/tex]
- Angle of \(\frac{z_1}{z_2} \):
[tex]\[ \arg(z_1) - \arg(z_2) = 30^\circ - 60^\circ = -30^\circ \][/tex]
So:
[tex]\[ \frac{z_1}{z_2} = 2 \breve{-30^\circ} \][/tex]
In summary:
2.1 Solutions:
[tex]\[ x = 4 \][/tex]
[tex]\[ y = 4 \][/tex]
2.2 Solutions:
[tex]\[ \begin{aligned} &2.2.1 \quad z_1 \cdot z_2 = 8 \breve{90^\circ} \\ &2.2.2 \quad \frac{z_1}{z_2} = 2 \breve{-30^\circ} \end{aligned} \][/tex]
### 2.1 Solve for \( x \) and \( y \) using complex numbers:
The given equation is:
[tex]\[ \left|\begin{array}{cc} x j & y j \\ -3 & -2 \end{array}\right| = \left|\begin{array}{cc} x - y & j \\ -4 & 2 \end{array}\right| \][/tex]
We need to evaluate the determinants of both matrices and then equate them.
Left-hand side (LHS):
[tex]\[ \left|\begin{array}{cc} x j & y j \\ -3 & -2 \end{array}\right| \][/tex]
To find the determinant:
[tex]\[ = (x j)(-2) - (y j)(-3) \][/tex]
[tex]\[ = -2x j + 3y j \][/tex]
[tex]\[ = j(-2x + 3y) \][/tex]
Right-hand side (RHS):
[tex]\[ \left|\begin{array}{cc} x - y & j \\ -4 & 2 \end{array}\right| \][/tex]
To find the determinant:
[tex]\[ = (x - y)(2) - (j)(-4) \][/tex]
[tex]\[ = 2(x - y) + 4j \][/tex]
Equate the determinants:
[tex]\[ j(-2x + 3y) = 2(x - y) + 4j \][/tex]
Separate the real and imaginary parts:
For imaginary parts:
[tex]\[ -2x + 3y = 4 \][/tex]
For real parts:
[tex]\[ 2(x - y) = 0 \][/tex]
[tex]\[ x - y = 0 \][/tex]
[tex]\[ x = y \][/tex]
Now substitute \( x = y \) into the imaginary parts equation:
[tex]\[ -2x + 3x = 4 \][/tex]
[tex]\[ x = 4 \][/tex]
Since \( x = y \), we also have \( y = 4 \).
Thus, the solutions are:
[tex]\[ x = 4 \][/tex]
[tex]\[ y = 4 \][/tex]
### 2.2 Given \( z_1 = 4 \breve{30^{\circ}} \) and \( z_2 = 2 \breve{60^{\circ}} \), determine:
#### 2.2.1 \( z_1 \cdot z_2 \)
To multiply two complex numbers in polar form, we multiply their moduli and add their angles.
- Modulus of \(z_1 \cdot z_2 \):
[tex]\[ |z_1| \cdot |z_2| = 4 \cdot 2 = 8 \][/tex]
- Angle of \(z_1 \cdot z_2 \):
[tex]\[ \arg(z_1) + \arg(z_2) = 30^\circ + 60^\circ = 90^\circ \][/tex]
So:
[tex]\[ z_1 \cdot z_2 = 8 \breve{90^\circ} \][/tex]
#### 2.2.2 \(\frac{z_1}{z_2}\)
To divide two complex numbers in polar form, we divide their moduli and subtract their angles.
- Modulus of \(\frac{z_1}{z_2} \):
[tex]\[ \frac{|z_1|}{|z_2|} = \frac{4}{2} = 2 \][/tex]
- Angle of \(\frac{z_1}{z_2} \):
[tex]\[ \arg(z_1) - \arg(z_2) = 30^\circ - 60^\circ = -30^\circ \][/tex]
So:
[tex]\[ \frac{z_1}{z_2} = 2 \breve{-30^\circ} \][/tex]
In summary:
2.1 Solutions:
[tex]\[ x = 4 \][/tex]
[tex]\[ y = 4 \][/tex]
2.2 Solutions:
[tex]\[ \begin{aligned} &2.2.1 \quad z_1 \cdot z_2 = 8 \breve{90^\circ} \\ &2.2.2 \quad \frac{z_1}{z_2} = 2 \breve{-30^\circ} \end{aligned} \][/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.