Find accurate and reliable answers to your questions on IDNLearn.com. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.

Use the Gaussian elimination method to solve the system of linear equations. If the system has infinitely many solutions, write the solution set with \( z \) arbitrary.

[tex]\[
\begin{array}{rr}
x + 2y + 2z = & 10 \\
-x + 3y + 5z = & 13 \\
x + y - 4z = & -13
\end{array}
\][/tex]

Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice.

A. There is one solution. The solution is \(\{(\square, \square, \square)\}\).
(Simplify your answers. Type integers or decimals.)

B. There are infinitely many solutions. The solutions are \(\{(\square, \square, z)\}\), where \( z \) is any real number. \(\square\)
(Simplify your answers. Type integers or decimals.)

C. The system is inconsistent. The solution set is [tex]\(\varnothing\)[/tex].


Sagot :

Sure, let's solve this system of linear equations using the Gaussian elimination method:

[tex]\[ \begin{array}{rr} x + 2y + 2z &= 10 \\ -x + 3y + 5z &= 13 \\ x + y - 4z &= -13 \end{array} \][/tex]

First, we construct the augmented matrix for the system:

[tex]\[ \begin{pmatrix} 1 & 2 & 2 & | & 10 \\ -1 & 3 & 5 & | & 13 \\ 1 & 1 & -4 & | & -13 \end{pmatrix} \][/tex]

Step 1: Eliminate \(x\) from the second and third rows

Add the first row to the second row:

[tex]\[ \begin{pmatrix} 1 & 2 & 2 & | & 10 \\ 0 & 5 & 7 & | & 23 \\ 1 & 1 & -4 & | & -13 \end{pmatrix} \][/tex]

Subtract the first row from the third row:

[tex]\[ \begin{pmatrix} 1 & 2 & 2 & | & 10 \\ 0 & 5 & 7 & | & 23 \\ 0 & -1 & -6 & | & -23 \end{pmatrix} \][/tex]

Step 2: Eliminate \(y\) from the third row

Multiply the second row by \( \frac{1}{5} \):

[tex]\[ \begin{pmatrix} 1 & 2 & 2 & | & 10 \\ 0 & 1 & \frac{7}{5} & | & \frac{23}{5} \\ 0 & -1 & -6 & | & -23 \end{pmatrix} \][/tex]

Add the second row to the third row:

[tex]\[ \begin{pmatrix} 1 & 2 & 2 & | & 10 \\ 0 & 1 & \frac{7}{5} & | & \frac{23}{5} \\ 0 & 0 & -\frac{23}{5} & | & \frac{23}{5} - 23 \end{pmatrix} \][/tex]

Simplifying the third row:

[tex]\[ \begin{pmatrix} 1 & 2 & 2 & | & 10 \\ 0 & 1 & \frac{7}{5} & | & \frac{23}{5} \\ 0 & 0 & -\frac{23}{5} & | & -\frac{92}{5} \end{pmatrix} \][/tex]

Step 3: Solve for \(z\)

From the third row:

[tex]\[ -\frac{23}{5}z = -\frac{92}{5} \implies z = 4 \][/tex]

Step 4: Back-substitute to find \(y\) and \(x\)

Substitute \(z = 4\) into the second row:

[tex]\[ 0 + y + \frac{7}{5}(4) = \frac{23}{5} \implies y + \frac{28}{5} = \frac{23}{5} \implies y = \frac{23}{5} - \frac{28}{5} = -1 \][/tex]

Substitute \( y = -1 \) and \( z = 4 \) into the first row:

[tex]\[ x + 2(-1) + 2(4) = 10 \implies x - 2 + 8 = 10 \implies x + 6 = 10 \implies x = 4 \][/tex]

Therefore, the solution is \((4, -1, 4)\).

So, the correct choice is:
A. There is one solution. The solution is [tex]\(\{(4, -1, 4)\}\)[/tex].