Discover new knowledge and insights with IDNLearn.com's extensive Q&A platform. Discover in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
We begin with the given information: \(\cos(2\alpha) = \frac{1}{3}\) and \(0^\circ < 2\alpha < 90^\circ\). We need to find the values of \(\sin \alpha\), \(\cos \alpha\), \(\tan \alpha\), \(\csc \alpha\), \(\sec \alpha\), and \(\cot \alpha\).
### Step 1: Determine \(\cos \alpha\)
We use the double-angle identity for cosine:
[tex]\[ \cos(2\alpha) = 2 \cos^2(\alpha) - 1 \][/tex]
Given that \(\cos(2\alpha) = \frac{1}{3}\), we can set up the equation:
[tex]\[ 2 \cos^2(\alpha) - 1 = \frac{1}{3} \][/tex]
Solving for \(\cos^2(\alpha)\):
[tex]\[ 2 \cos^2(\alpha) = \frac{1}{3} + 1 = \frac{4}{3} \][/tex]
[tex]\[ \cos^2(\alpha) = \frac{4}{3} \cdot \frac{1}{2} = \frac{2}{3} \][/tex]
Taking the positive square root (since \(0^\circ < 2\alpha < 90^\circ\) implies \(0^\circ < \alpha < 45^\circ\), where cosine is positive):
[tex]\[ \cos(\alpha) = \sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3} \approx 0.8165 \][/tex]
### Step 2: Determine \(\sin \alpha\)
Using the Pythagorean identity:
[tex]\[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \][/tex]
[tex]\[ \sin^2(\alpha) = 1 - \cos^2(\alpha) = 1 - \frac{2}{3} = \frac{1}{3} \][/tex]
Taking the positive square root:
[tex]\[ \sin(\alpha) = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \approx 0.5774 \][/tex]
### Step 3: Determine \(\tan \alpha\)
Using the definition of tangent:
[tex]\[ \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\frac{\sqrt{3}}{3}}{\frac{\sqrt{6}}{3}} = \frac{\sqrt{3}}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{3} \cdot \sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \approx 0.7071 \][/tex]
### Step 4: Determine \(\csc \alpha\)
Using the definition of cosecant:
[tex]\[ \csc(\alpha) = \frac{1}{\sin(\alpha)} = \frac{1}{\frac{\sqrt{3}}{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \approx 1.7321 \][/tex]
### Step 5: Determine \(\sec \alpha\)
Using the definition of secant:
[tex]\[ \sec(\alpha) = \frac{1}{\cos(\alpha)} = \frac{1}{\frac{\sqrt{6}}{3}} = \frac{3}{\sqrt{6}} = \frac{3 \cdot \sqrt{6}}{6} = \frac{\sqrt{6}}{2} \approx 1.2247 \][/tex]
### Step 6: Determine \(\cot \alpha\)
Using the definition of cotangent:
[tex]\[ \cot(\alpha) = \frac{1}{\tan(\alpha)} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \approx 1.4142 \][/tex]
### Summary
The exact values are:
- \(\sin(\alpha) = \frac{\sqrt{3}}{3} \approx 0.5774\)
- \(\cos(\alpha) = \frac{\sqrt{6}}{3} \approx 0.8165\)
- \(\tan(\alpha) = \frac{\sqrt{2}}{2} \approx 0.7071\)
- \(\csc(\alpha) = \sqrt{3} \approx 1.7321\)
- \(\sec(\alpha) = \frac{\sqrt{6}}{2} \approx 1.2247\)
- [tex]\(\cot(\alpha) = \sqrt{2} \approx 1.4142\)[/tex]
### Step 1: Determine \(\cos \alpha\)
We use the double-angle identity for cosine:
[tex]\[ \cos(2\alpha) = 2 \cos^2(\alpha) - 1 \][/tex]
Given that \(\cos(2\alpha) = \frac{1}{3}\), we can set up the equation:
[tex]\[ 2 \cos^2(\alpha) - 1 = \frac{1}{3} \][/tex]
Solving for \(\cos^2(\alpha)\):
[tex]\[ 2 \cos^2(\alpha) = \frac{1}{3} + 1 = \frac{4}{3} \][/tex]
[tex]\[ \cos^2(\alpha) = \frac{4}{3} \cdot \frac{1}{2} = \frac{2}{3} \][/tex]
Taking the positive square root (since \(0^\circ < 2\alpha < 90^\circ\) implies \(0^\circ < \alpha < 45^\circ\), where cosine is positive):
[tex]\[ \cos(\alpha) = \sqrt{\frac{2}{3}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3} \approx 0.8165 \][/tex]
### Step 2: Determine \(\sin \alpha\)
Using the Pythagorean identity:
[tex]\[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \][/tex]
[tex]\[ \sin^2(\alpha) = 1 - \cos^2(\alpha) = 1 - \frac{2}{3} = \frac{1}{3} \][/tex]
Taking the positive square root:
[tex]\[ \sin(\alpha) = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \approx 0.5774 \][/tex]
### Step 3: Determine \(\tan \alpha\)
Using the definition of tangent:
[tex]\[ \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\frac{\sqrt{3}}{3}}{\frac{\sqrt{6}}{3}} = \frac{\sqrt{3}}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{3} \cdot \sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \approx 0.7071 \][/tex]
### Step 4: Determine \(\csc \alpha\)
Using the definition of cosecant:
[tex]\[ \csc(\alpha) = \frac{1}{\sin(\alpha)} = \frac{1}{\frac{\sqrt{3}}{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \approx 1.7321 \][/tex]
### Step 5: Determine \(\sec \alpha\)
Using the definition of secant:
[tex]\[ \sec(\alpha) = \frac{1}{\cos(\alpha)} = \frac{1}{\frac{\sqrt{6}}{3}} = \frac{3}{\sqrt{6}} = \frac{3 \cdot \sqrt{6}}{6} = \frac{\sqrt{6}}{2} \approx 1.2247 \][/tex]
### Step 6: Determine \(\cot \alpha\)
Using the definition of cotangent:
[tex]\[ \cot(\alpha) = \frac{1}{\tan(\alpha)} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \approx 1.4142 \][/tex]
### Summary
The exact values are:
- \(\sin(\alpha) = \frac{\sqrt{3}}{3} \approx 0.5774\)
- \(\cos(\alpha) = \frac{\sqrt{6}}{3} \approx 0.8165\)
- \(\tan(\alpha) = \frac{\sqrt{2}}{2} \approx 0.7071\)
- \(\csc(\alpha) = \sqrt{3} \approx 1.7321\)
- \(\sec(\alpha) = \frac{\sqrt{6}}{2} \approx 1.2247\)
- [tex]\(\cot(\alpha) = \sqrt{2} \approx 1.4142\)[/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.