IDNLearn.com: Your go-to resource for finding precise and accurate answers. Get prompt and accurate answers to your questions from our community of knowledgeable experts.
Sagot :
To find the equilibrium constant \( K_c \) for the given reaction at equilibrium, we can use the equilibrium concentrations given and the formula for the equilibrium constant for the reaction:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \longleftrightarrow 2 \text{NH}_3(g) \][/tex]
The equilibrium constant expression for this reaction is:
[tex]\[ K_c = \frac{{[\text{NH}_3]^2}}{{[\text{N}_2] \cdot [\text{H}_2]^3}} \][/tex]
Given:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
We substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{{(0.105)^2}}{{(1.1) \cdot (1.50)^3}} \][/tex]
Evaluating the numerator and the denominator:
[tex]\[ \text{Numerator} = (0.105)^2 = 0.011025 \][/tex]
[tex]\[ \text{Denominator} = 1.1 \cdot (1.50)^3 = 1.1 \cdot 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_c = \frac{0.011025}{3.7125} \approx 0.0029697 \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ K_c \approx 0.0030 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at this temperature is 0.0030.
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \longleftrightarrow 2 \text{NH}_3(g) \][/tex]
The equilibrium constant expression for this reaction is:
[tex]\[ K_c = \frac{{[\text{NH}_3]^2}}{{[\text{N}_2] \cdot [\text{H}_2]^3}} \][/tex]
Given:
[tex]\[ [\text{NH}_3] = 0.105 \, M \][/tex]
[tex]\[ [\text{N}_2] = 1.1 \, M \][/tex]
[tex]\[ [\text{H}_2] = 1.50 \, M \][/tex]
We substitute these values into the equilibrium constant expression:
[tex]\[ K_c = \frac{{(0.105)^2}}{{(1.1) \cdot (1.50)^3}} \][/tex]
Evaluating the numerator and the denominator:
[tex]\[ \text{Numerator} = (0.105)^2 = 0.011025 \][/tex]
[tex]\[ \text{Denominator} = 1.1 \cdot (1.50)^3 = 1.1 \cdot 3.375 = 3.7125 \][/tex]
Now, divide the numerator by the denominator:
[tex]\[ K_c = \frac{0.011025}{3.7125} \approx 0.0029697 \][/tex]
Rounding this to three significant figures, we get:
[tex]\[ K_c \approx 0.0030 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at this temperature is 0.0030.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.