From simple questions to complex issues, IDNLearn.com has the answers you need. Discover in-depth and reliable answers to all your questions from our knowledgeable community members who are always ready to assist.
Sagot :
Certainly! Let's solve this step-by-step.
### Problem Statement:
A copper rod with a mass of \(200.0 \, g\) is heated from an initial temperature of \(20.0^{\circ}C\) to a final temperature of \(40.0^{\circ}C\). It absorbs \(1,540 \, J\) of heat during this process. We need to determine the specific heat capacity (\(C_p\)) of the copper rod using the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
#### Given:
1. Mass (\(m\)): \(200.0 \, g\)
2. Initial temperature (\(T_i\)): \(20.0^{\circ}C\)
3. Final temperature (\(T_f\)): \(40.0^{\circ}C\)
4. Heat added (\(q\)): \(1,540 \, J\)
### Step-by-Step Solution:
1. Calculate the change in temperature (\(\Delta T\)):
[tex]\[ \Delta T = T_f - T_i \][/tex]
[tex]\[ \Delta T = 40.0^{\circ}C - 20.0^{\circ}C \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
2. Rearrange the formula to solve for the specific heat capacity \((C_p)\):
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
3. Substitute the values into the formula:
[tex]\[ q = 1,540 \, J \][/tex]
[tex]\[ m = 200.0 \, g \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
[tex]\[ C_p = \frac{1,540 \, J}{200.0 \, g \cdot 20.0^{\circ}C} \][/tex]
4. Calculate the specific heat capacity \(C_p\):
[tex]\[ C_p = \frac{1,540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1,540}{4,000} \][/tex]
[tex]\[ C_p = 0.385 \, \text{J/(g·°C)} \][/tex]
### Conclusion:
The specific heat capacity of copper is \(0.385 \, \text{J/(g·°C)}\).
From the provided options:
- \(0.0130 \, \text{J/(g·°C)}\)
- \(0.0649 \, \text{J/(g·°C)}\)
- \(0.193 \, \text{J/(g·°C)}\)
- \(0.385 \, \text{J/(g·°C)}\)
The correct answer is:
[tex]\[ \boxed{0.385 \, \text{J/(g·°C)} } \][/tex]
### Problem Statement:
A copper rod with a mass of \(200.0 \, g\) is heated from an initial temperature of \(20.0^{\circ}C\) to a final temperature of \(40.0^{\circ}C\). It absorbs \(1,540 \, J\) of heat during this process. We need to determine the specific heat capacity (\(C_p\)) of the copper rod using the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
#### Given:
1. Mass (\(m\)): \(200.0 \, g\)
2. Initial temperature (\(T_i\)): \(20.0^{\circ}C\)
3. Final temperature (\(T_f\)): \(40.0^{\circ}C\)
4. Heat added (\(q\)): \(1,540 \, J\)
### Step-by-Step Solution:
1. Calculate the change in temperature (\(\Delta T\)):
[tex]\[ \Delta T = T_f - T_i \][/tex]
[tex]\[ \Delta T = 40.0^{\circ}C - 20.0^{\circ}C \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
2. Rearrange the formula to solve for the specific heat capacity \((C_p)\):
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
3. Substitute the values into the formula:
[tex]\[ q = 1,540 \, J \][/tex]
[tex]\[ m = 200.0 \, g \][/tex]
[tex]\[ \Delta T = 20.0^{\circ}C \][/tex]
[tex]\[ C_p = \frac{1,540 \, J}{200.0 \, g \cdot 20.0^{\circ}C} \][/tex]
4. Calculate the specific heat capacity \(C_p\):
[tex]\[ C_p = \frac{1,540}{200.0 \cdot 20.0} \][/tex]
[tex]\[ C_p = \frac{1,540}{4,000} \][/tex]
[tex]\[ C_p = 0.385 \, \text{J/(g·°C)} \][/tex]
### Conclusion:
The specific heat capacity of copper is \(0.385 \, \text{J/(g·°C)}\).
From the provided options:
- \(0.0130 \, \text{J/(g·°C)}\)
- \(0.0649 \, \text{J/(g·°C)}\)
- \(0.193 \, \text{J/(g·°C)}\)
- \(0.385 \, \text{J/(g·°C)}\)
The correct answer is:
[tex]\[ \boxed{0.385 \, \text{J/(g·°C)} } \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.