Connect with knowledgeable individuals and get your questions answered on IDNLearn.com. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

1H-1 The half-life \(\lambda\) of a radioactive substance decaying according to the law \(y = y_0 e^{-k t}\) is defined to be the time it takes for the amount to decrease to \(\frac{1}{2}\) of the initial amount \(y_0\).

a) Express the half-life \(\lambda\) in terms of \(k\). (Do this from scratch - don't just plug into formulas given here or elsewhere.)
[tex]\[
\begin{aligned}
y &= y_0 e^{-k t} \\
\frac{y}{y_0} &= e^{-k t} \\
y &= \frac{y_0}{2} \\
\frac{1}{2} &= e^{-k \lambda} \\
\ln\left(\frac{1}{2}\right) &= -k \lambda \\
\lambda &= \frac{\ln(2)}{k}
\end{aligned}
\][/tex]

b) Show using your expression for [tex]\(\lambda\)[/tex] that if at time [tex]\(t_1\)[/tex] the amount is [tex]\(y_1\)[/tex], then at time [tex]\(t_1 + \lambda\)[/tex] it will be [tex]\(\frac{y_1}{2}\)[/tex], no matter what [tex]\(t_1\)[/tex] is.


Sagot :

Sure, let's start with part (a) and then move on to part (b).

### Part (a): Expressing the Half-Life \( \lambda \) in Terms of \( k \)
The half-life \( \lambda \) is defined as the time it takes for the amount of the substance to decrease to half of its initial amount \( y_0 \). The decay of the substance follows the equation:
[tex]\[ y = y_0 e^{-kt} \][/tex]

1. By definition, when \( t = \lambda \), the amount \( y \) is half of \( y_0 \), so:
[tex]\[ y = \frac{y_0}{2} \][/tex]

2. Substituting \( y \) and \( t = \lambda \) into the decay equation:
[tex]\[ \frac{y_0}{2} = y_0 e^{-k \lambda} \][/tex]

3. Divide both sides by \( y_0 \) to simplify:
[tex]\[ \frac{1}{2} = e^{-k \lambda} \][/tex]

4. Take the natural logarithm on both sides to solve for \( \lambda \):
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln\left(e^{-k \lambda}\right) \][/tex]
[tex]\[ \ln\left(\frac{1}{2}\right) = -k \lambda \][/tex]

5. Simplify \( \ln\left(\frac{1}{2}\right) \):
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = 0 - \ln(2) = -\ln(2) \][/tex]

6. Substitute and solve for \( \lambda \):
[tex]\[ -\ln(2) = -k \lambda \][/tex]
[tex]\[ \lambda = \frac{\ln(2)}{k} \][/tex]

Thus, the half-life \( \lambda \) in terms of \( k \) is:
[tex]\[ \lambda = \frac{\ln(2)}{k} \][/tex]

### Part (b): Verifying the Amount at Time \( t_1 + \lambda \)
Now, we need to verify that the amount at time \( t_1 + \lambda \) is half of the amount at time \( t_1 \).

1. Suppose at time \( t_1 \), the amount is \( y_1 \). Then:
[tex]\[ y_1 = y_0 e^{-k t_1} \][/tex]

2. We want to find the amount \( y \) at time \( t = t_1 + \lambda \):
[tex]\[ y = y_0 e^{-k (t_1 + \lambda)} \][/tex]

3. Substitute \( \lambda = \frac{\ln(2)}{k} \):
[tex]\[ y = y_0 e^{-k \left(t_1 + \frac{\ln(2)}{k}\right)} \][/tex]

4. Simplify the exponent:
[tex]\[ y = y_0 e^{-k t_1} e^{-k \frac{\ln(2)}{k}} \][/tex]
[tex]\[ y = y_0 e^{-k t_1} e^{-\ln(2)} \][/tex]

5. Since \( e^{-\ln(2)} = \frac{1}{e^{\ln(2)}} = \frac{1}{2} \):
[tex]\[ y = y_0 e^{-k t_1} \cdot \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2} y_0 e^{-k t_1} \][/tex]

6. Recall that \( y_0 e^{-k t_1} = y_1 \):
[tex]\[ y = \frac{1}{2} y_1 \][/tex]

Therefore, at time \( t_1 + \lambda \), the amount will be half of the amount at time \( t_1 \):
[tex]\[ y = \frac{y_1}{2} \][/tex]

This confirms that the amount at time [tex]\( t_1 + \lambda \)[/tex] is indeed [tex]\( \frac{y_1}{2} \)[/tex], no matter what [tex]\( t_1 \)[/tex] is.