Get the information you need quickly and easily with IDNLearn.com. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Sure, let’s break down the process of finding [tex]$\vect{F}_{1}$[/tex], [tex]$\vect{F}_{2}$[/tex], and the net force [tex]$\vect{F}$[/tex] on [tex]$q_3$[/tex] step by step.
Given:
- The charge [tex]\( q_1 = 1.6 \times 10^{-7} \)[/tex] C
- The charge [tex]\( q_2 = -75.8 \times 10^{-4} \)[/tex] C
- The charge [tex]\( q_3 = 9.2 \times 10^{-6} \)[/tex] C
- The distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{13} \)[/tex] ) is 0.03 m
- The distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{23} \)[/tex] ) is 0.02 m
- Coulomb’s constant [tex]\( k = 8.99 \times 10^{9} \, \text{Nm}^{2}/\text{C}^{2} \)[/tex]
### Step-by-Step Solution:
1. Calculate the force exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_1 \)[/tex] ):
[tex]\[ F_1 = k \cdot \frac{|q_1 \cdot q_3|}{r_{13}^2} \][/tex]
Given that [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] have the same sign (positive), the force will be repulsive. According to the conventions provided, a repulsive force will be directed to the right and thus be positive.
Using the correct numerical values, we get:
[tex]\[ F_1 \approx 14.703644444444445 \, \text{N} \][/tex]
2. Calculate the force exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_2 \)[/tex] ):
[tex]\[ F_2 = k \cdot \frac{|q_2 \cdot q_3|}{r_{23}^2} \][/tex]
Given that [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force will be attractive. According to the conventions provided, an attractive force will be directed to the left and thus be negative.
Using the correct numerical values, we get:
[tex]\[ F_2 \approx -1567316.5999999999 \, \text{N} \][/tex]
3. Calculate the net force on [tex]\( q_3 \)[/tex] ( [tex]\( F_{\text{net}} \)[/tex] ):
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]
[tex]\[ F_{\text{net}} = 14.703644444444445 - 1567316.5999999999 \][/tex]
[tex]\[ F_{\text{net}} \approx -1567301.8963555554 \, \text{N} \][/tex]
### Final Answer:
[tex]\[ \vec{F}_1 = 14.703644444444445 \, \text{N} \][/tex]
[tex]\[ \vec{F}_2 = -1567316.5999999999 \, \text{N} \][/tex]
[tex]\[ \vec{F}_{\text{net}} = -1567301.8963555554 \, \text{N} \][/tex]
The vectors [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex] are the forces exerted on [tex]\( q_3 \)[/tex] by [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] respectively, and [tex]\( \vec{F}_{\text{net}} \)[/tex] is the net force on [tex]\( q_3 \)[/tex], directed to the left due to the dominance of the attractive force from [tex]\( q_2 \)[/tex].
Given:
- The charge [tex]\( q_1 = 1.6 \times 10^{-7} \)[/tex] C
- The charge [tex]\( q_2 = -75.8 \times 10^{-4} \)[/tex] C
- The charge [tex]\( q_3 = 9.2 \times 10^{-6} \)[/tex] C
- The distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{13} \)[/tex] ) is 0.03 m
- The distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{23} \)[/tex] ) is 0.02 m
- Coulomb’s constant [tex]\( k = 8.99 \times 10^{9} \, \text{Nm}^{2}/\text{C}^{2} \)[/tex]
### Step-by-Step Solution:
1. Calculate the force exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_1 \)[/tex] ):
[tex]\[ F_1 = k \cdot \frac{|q_1 \cdot q_3|}{r_{13}^2} \][/tex]
Given that [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] have the same sign (positive), the force will be repulsive. According to the conventions provided, a repulsive force will be directed to the right and thus be positive.
Using the correct numerical values, we get:
[tex]\[ F_1 \approx 14.703644444444445 \, \text{N} \][/tex]
2. Calculate the force exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_2 \)[/tex] ):
[tex]\[ F_2 = k \cdot \frac{|q_2 \cdot q_3|}{r_{23}^2} \][/tex]
Given that [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force will be attractive. According to the conventions provided, an attractive force will be directed to the left and thus be negative.
Using the correct numerical values, we get:
[tex]\[ F_2 \approx -1567316.5999999999 \, \text{N} \][/tex]
3. Calculate the net force on [tex]\( q_3 \)[/tex] ( [tex]\( F_{\text{net}} \)[/tex] ):
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]
[tex]\[ F_{\text{net}} = 14.703644444444445 - 1567316.5999999999 \][/tex]
[tex]\[ F_{\text{net}} \approx -1567301.8963555554 \, \text{N} \][/tex]
### Final Answer:
[tex]\[ \vec{F}_1 = 14.703644444444445 \, \text{N} \][/tex]
[tex]\[ \vec{F}_2 = -1567316.5999999999 \, \text{N} \][/tex]
[tex]\[ \vec{F}_{\text{net}} = -1567301.8963555554 \, \text{N} \][/tex]
The vectors [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex] are the forces exerted on [tex]\( q_3 \)[/tex] by [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] respectively, and [tex]\( \vec{F}_{\text{net}} \)[/tex] is the net force on [tex]\( q_3 \)[/tex], directed to the left due to the dominance of the attractive force from [tex]\( q_2 \)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.