IDNLearn.com connects you with experts who provide accurate and reliable answers. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
Sure! Let's break down the solution step-by-step to find the specific heat ([tex]\(C_p\)[/tex]) of the substance.
### Given Data:
1. Mass ([tex]\(m\)[/tex]) of the substance: [tex]\(0.465 \, \text{kg}\)[/tex]
2. Heat energy ([tex]\(q\)[/tex]) added: [tex]\(3,000.0 \, \text{J}\)[/tex]
3. Initial temperature ([tex]\(T_i\)[/tex]): [tex]\(0.0^\circ \text{C}\)[/tex]
4. Final temperature ([tex]\(T_f\)[/tex]): [tex]\(100.0^\circ \text{C}\)[/tex]
### Step-by-Step Solution:
1. Calculate the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = 100.0^\circ \text{C} - 0.0^\circ \text{C} = 100.0^\circ \text{C} \][/tex]
2. Use the formula [tex]\(q = m C_p \Delta T\)[/tex] to solve for [tex]\(C_p\)[/tex]:
[tex]\[ q = m C_p \Delta T \][/tex]
Rearranging to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
Plugging in the given values:
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{0.465 \, \text{kg} \times 100.0^\circ \text{C}} \][/tex]
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{46.5 \, \text{kg}^\circ \text{C}} \][/tex]
[tex]\[ C_p = 64.51612903225806 \, \text{J/(kg}^\circ \text{C)} \][/tex]
3. Convert the specific heat from [tex]\(\text{J/(kg}^\circ \text{C)}\)[/tex] to [tex]\(\text{J/(g}^\circ \text{C)}\)[/tex]:
Since there are [tex]\(1,000 \, \text{g}\)[/tex] in [tex]\(1 \, \text{kg}\)[/tex], divide the specific heat by [tex]\(1,000\)[/tex]:
[tex]\[ C_p = \frac{64.51612903225806 \, \text{J/(kg}^\circ \text{C)}}{1,000} \][/tex]
[tex]\[ C_p = 0.06451612903225806 \, \text{J/(g}^\circ \text{C)} \][/tex]
### Conclusion:
None of the provided choices correctly match the specific heat calculated, which is approximately [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex]. Thus, the specific heat of the substance is [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex].
### Given Data:
1. Mass ([tex]\(m\)[/tex]) of the substance: [tex]\(0.465 \, \text{kg}\)[/tex]
2. Heat energy ([tex]\(q\)[/tex]) added: [tex]\(3,000.0 \, \text{J}\)[/tex]
3. Initial temperature ([tex]\(T_i\)[/tex]): [tex]\(0.0^\circ \text{C}\)[/tex]
4. Final temperature ([tex]\(T_f\)[/tex]): [tex]\(100.0^\circ \text{C}\)[/tex]
### Step-by-Step Solution:
1. Calculate the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = 100.0^\circ \text{C} - 0.0^\circ \text{C} = 100.0^\circ \text{C} \][/tex]
2. Use the formula [tex]\(q = m C_p \Delta T\)[/tex] to solve for [tex]\(C_p\)[/tex]:
[tex]\[ q = m C_p \Delta T \][/tex]
Rearranging to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
Plugging in the given values:
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{0.465 \, \text{kg} \times 100.0^\circ \text{C}} \][/tex]
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{46.5 \, \text{kg}^\circ \text{C}} \][/tex]
[tex]\[ C_p = 64.51612903225806 \, \text{J/(kg}^\circ \text{C)} \][/tex]
3. Convert the specific heat from [tex]\(\text{J/(kg}^\circ \text{C)}\)[/tex] to [tex]\(\text{J/(g}^\circ \text{C)}\)[/tex]:
Since there are [tex]\(1,000 \, \text{g}\)[/tex] in [tex]\(1 \, \text{kg}\)[/tex], divide the specific heat by [tex]\(1,000\)[/tex]:
[tex]\[ C_p = \frac{64.51612903225806 \, \text{J/(kg}^\circ \text{C)}}{1,000} \][/tex]
[tex]\[ C_p = 0.06451612903225806 \, \text{J/(g}^\circ \text{C)} \][/tex]
### Conclusion:
None of the provided choices correctly match the specific heat calculated, which is approximately [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex]. Thus, the specific heat of the substance is [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.