IDNLearn.com is the place where your questions are met with thoughtful and precise answers. Our community provides timely and precise responses to help you understand and solve any issue you face.
Sagot :
Sure! Let's break down the solution step-by-step to find the specific heat ([tex]\(C_p\)[/tex]) of the substance.
### Given Data:
1. Mass ([tex]\(m\)[/tex]) of the substance: [tex]\(0.465 \, \text{kg}\)[/tex]
2. Heat energy ([tex]\(q\)[/tex]) added: [tex]\(3,000.0 \, \text{J}\)[/tex]
3. Initial temperature ([tex]\(T_i\)[/tex]): [tex]\(0.0^\circ \text{C}\)[/tex]
4. Final temperature ([tex]\(T_f\)[/tex]): [tex]\(100.0^\circ \text{C}\)[/tex]
### Step-by-Step Solution:
1. Calculate the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = 100.0^\circ \text{C} - 0.0^\circ \text{C} = 100.0^\circ \text{C} \][/tex]
2. Use the formula [tex]\(q = m C_p \Delta T\)[/tex] to solve for [tex]\(C_p\)[/tex]:
[tex]\[ q = m C_p \Delta T \][/tex]
Rearranging to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
Plugging in the given values:
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{0.465 \, \text{kg} \times 100.0^\circ \text{C}} \][/tex]
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{46.5 \, \text{kg}^\circ \text{C}} \][/tex]
[tex]\[ C_p = 64.51612903225806 \, \text{J/(kg}^\circ \text{C)} \][/tex]
3. Convert the specific heat from [tex]\(\text{J/(kg}^\circ \text{C)}\)[/tex] to [tex]\(\text{J/(g}^\circ \text{C)}\)[/tex]:
Since there are [tex]\(1,000 \, \text{g}\)[/tex] in [tex]\(1 \, \text{kg}\)[/tex], divide the specific heat by [tex]\(1,000\)[/tex]:
[tex]\[ C_p = \frac{64.51612903225806 \, \text{J/(kg}^\circ \text{C)}}{1,000} \][/tex]
[tex]\[ C_p = 0.06451612903225806 \, \text{J/(g}^\circ \text{C)} \][/tex]
### Conclusion:
None of the provided choices correctly match the specific heat calculated, which is approximately [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex]. Thus, the specific heat of the substance is [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex].
### Given Data:
1. Mass ([tex]\(m\)[/tex]) of the substance: [tex]\(0.465 \, \text{kg}\)[/tex]
2. Heat energy ([tex]\(q\)[/tex]) added: [tex]\(3,000.0 \, \text{J}\)[/tex]
3. Initial temperature ([tex]\(T_i\)[/tex]): [tex]\(0.0^\circ \text{C}\)[/tex]
4. Final temperature ([tex]\(T_f\)[/tex]): [tex]\(100.0^\circ \text{C}\)[/tex]
### Step-by-Step Solution:
1. Calculate the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = 100.0^\circ \text{C} - 0.0^\circ \text{C} = 100.0^\circ \text{C} \][/tex]
2. Use the formula [tex]\(q = m C_p \Delta T\)[/tex] to solve for [tex]\(C_p\)[/tex]:
[tex]\[ q = m C_p \Delta T \][/tex]
Rearranging to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
Plugging in the given values:
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{0.465 \, \text{kg} \times 100.0^\circ \text{C}} \][/tex]
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{46.5 \, \text{kg}^\circ \text{C}} \][/tex]
[tex]\[ C_p = 64.51612903225806 \, \text{J/(kg}^\circ \text{C)} \][/tex]
3. Convert the specific heat from [tex]\(\text{J/(kg}^\circ \text{C)}\)[/tex] to [tex]\(\text{J/(g}^\circ \text{C)}\)[/tex]:
Since there are [tex]\(1,000 \, \text{g}\)[/tex] in [tex]\(1 \, \text{kg}\)[/tex], divide the specific heat by [tex]\(1,000\)[/tex]:
[tex]\[ C_p = \frac{64.51612903225806 \, \text{J/(kg}^\circ \text{C)}}{1,000} \][/tex]
[tex]\[ C_p = 0.06451612903225806 \, \text{J/(g}^\circ \text{C)} \][/tex]
### Conclusion:
None of the provided choices correctly match the specific heat calculated, which is approximately [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex]. Thus, the specific heat of the substance is [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for visiting IDNLearn.com. For reliable answers to all your questions, please visit us again soon.