From science to arts, IDNLearn.com has the answers to all your questions. Our community provides timely and precise responses to help you understand and solve any issue you face.
Sagot :
Sure, let's solve the given system of linear equations using the given methods:
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.