Get detailed and accurate responses to your questions on IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
Sure, let's solve the given system of linear equations using the given methods:
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
The system of equations is:
[tex]\[ 3m + 2y = 1 \][/tex]
[tex]\[ 4m - 5y = -14 \][/tex]
### a) Using Inverses
Step 1: Write the system in matrix form:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
where
[tex]\[ A = \begin{pmatrix} 3 & 2 \\ 4 & -5 \\ \end{pmatrix} \][/tex],
[tex]\[ \mathbf{x} = \begin{pmatrix} m \\ y \\ \end{pmatrix} \][/tex],
and
[tex]\[ \mathbf{b} = \begin{pmatrix} 1 \\ -14 \\ \end{pmatrix}. \][/tex]
Step 2: Find the inverse [tex]\( A^{-1} \)[/tex] of matrix [tex]\( A \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} 0.2173913 & 0.08695652 \\ 0.17391304 & -0.13043478 \\ \end{pmatrix} \][/tex]
Step 3: Multiply the inverse of the matrix [tex]\( A \)[/tex] by the vector [tex]\( \mathbf{b} \)[/tex] to get [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ \end{pmatrix} \][/tex]
So, the solution using the inverse method is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
### b) Using Determinants (Cramer's Rule)
Step 1: Calculate the determinant of matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 3 & 2 \\ 4 & -5 \\ \end{vmatrix} = (3 \cdot (-5)) - (2 \cdot 4) = -15 - 8 = -23 \][/tex]
Step 2: Compute the determinant of matrix obtained by replacing the first column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_m) \)[/tex]:
[tex]\[ A_m = \begin{pmatrix} 1 & 2 \\ -14 & -5 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_m) = \begin{vmatrix} 1 & 2 \\ -14 & -5 \\ \end{vmatrix} = (1 \cdot (-5)) - (2 \cdot (-14)) = -5 + 28 = 23 \][/tex]
Step 3: Compute the determinant of matrix obtained by replacing the second column of [tex]\( A \)[/tex] with [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \text{det}(A_y) \)[/tex]:
[tex]\[ A_y = \begin{pmatrix} 3 & 1 \\ 4 & -14 \\ \end{pmatrix} \][/tex]
[tex]\[ \text{det}(A_y) = \begin{vmatrix} 3 & 1 \\ 4 & -14 \\ \end{vmatrix} = (3 \cdot (-14)) - (1 \cdot 4) = -42 - 4 = -46 \][/tex]
Step 4: Use Cramer's Rule to find [tex]\( m \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ m = \frac{\text{det}(A_m)}{\text{det}(A)} = \frac{23}{-23} = -1 \][/tex]
[tex]\[ y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{-46}{-23} = 2 \][/tex]
So, the solution using determinants (Cramer's Rule) is:
[tex]\[ m = -1, \quad y = 2 \][/tex]
In both methods, we obtained the same solution:
[tex]\[ m = -1, \quad y = 2 \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.