IDNLearn.com makes it easy to find answers and share knowledge with others. Explore thousands of verified answers from experts and find the solutions you need, no matter the topic.
Sagot :
Let's break down each part of the problem step by step.
### (i) Functional Values and Operations
Functions Given:
- [tex]\( f(x) = 2x + 1 \)[/tex]
- [tex]\( g(x) = 3x + 1 \)[/tex]
Definitions for Operations:
- Addition of functions: [tex]\( (f + g)(x) = f(x) + g(x) \)[/tex]
- Multiplication of functions: [tex]\( (f \cdot g)(x) = f(x) \cdot g(x) \)[/tex]
- Composition of functions [tex]\( f \circ g \)[/tex] and [tex]\( g \circ f \)[/tex]:
- [tex]\( (f \circ g)(x) = f(g(x)) \)[/tex]
- [tex]\( (g \circ f)(x) = g(f(x)) \)[/tex]
#### 1. Addition: [tex]\(\bar{g}(x) = (f(x) + g(x))\)[/tex]
[tex]\[ \bar{g}(x) = f(x) + g(x) \][/tex]
[tex]\[ = (2x + 1) + (3x + 1) \][/tex]
[tex]\[ = 2x + 3x + 1 + 1 \][/tex]
[tex]\[ = 5x + 2 \][/tex]
So, [tex]\(\bar{g}(x) = 5x + 2\)[/tex].
#### 2. Multiplication: [tex]\((fg)(x) = (f(x) \cdot g(x))\)[/tex]
[tex]\[ (fg)(x) = (2x + 1) \cdot (3x + 1) \][/tex]
[tex]\[ = 2x \cdot 3x + 2x \cdot 1 + 1 \cdot 3x + 1 \cdot 1 \][/tex]
[tex]\[ = 6x^2 + 2x + 3x + 1 \][/tex]
[tex]\[ = 6x^2 + 5x + 1 \][/tex]
So, [tex]\((fg)(x) = 6x^2 + 5x + 1\)[/tex].
#### 3. Composition [tex]\( f \circ g \)[/tex] (i.e., [tex]\( f(g(x)) \)[/tex]):
[tex]\[ (f \circ g)(x) = f(g(x)) = f(3x + 1) \][/tex]
Substitute [tex]\( 3x + 1 \)[/tex] into [tex]\( f(x) = 2x + 1 \)[/tex]:
[tex]\[ = 2(3x + 1) + 1 \][/tex]
[tex]\[ = 6x + 2 + 1 \][/tex]
[tex]\[ = 6x + 3 \][/tex]
So, [tex]\( (f \circ g)(x) = 6x + 3 \)[/tex].
#### 4. Composition [tex]\( g \circ f \)[/tex] (i.e., [tex]\( g(f(x)) \)[/tex]):
[tex]\[ (g \circ f)(x) = g(f(x)) = g(2x + 1) \][/tex]
Substitute [tex]\( 2x + 1 \)[/tex] into [tex]\( g(x) = 3x + 1 \)[/tex]:
[tex]\[ = 3(2x + 1) + 1 \][/tex]
[tex]\[ = 6x + 3 + 1 \][/tex]
[tex]\[ = 6x + 4 \][/tex]
So, [tex]\( (g \circ f)(x) = 6x + 4 \)[/tex].
### (ii) Equality of [tex]\( fg \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex]
Let's compare the expressions we derived:
- [tex]\( (fg)(x) = 6x^2 + 5x + 1 \)[/tex]
- [tex]\( (f \circ g)(x) = 6x + 3 \)[/tex]
- [tex]\( (g \circ f)(x) = 6x + 4 \)[/tex]
Clearly,
[tex]\[ (fg)(x) \neq (f \circ g)(x) \][/tex]
[tex]\[ (f \circ g)(x) \neq (g \circ f)(x) \][/tex]
[tex]\[ (fg)(x) \neq (g \circ f)(x) \][/tex]
Therefore, [tex]\( fg \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex] are not equal.
### (iii) Domain and Range of Each Operation
Domain:
Since [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined from [tex]\( \mathbb{R} \rightarrow \mathbb{R} \)[/tex], meaning they are defined for all real [tex]\( x \)[/tex]:
- The domains of [tex]\( f \)[/tex], [tex]\( g \)[/tex], [tex]\( \bar{g} \)[/tex], [tex]\( (fg) \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex] are all [tex]\( \mathbb{R} \)[/tex].
Range:
1. Addition [tex]\(\bar{g}(x) = 5x + 2\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 5x + 2 \)[/tex] is a linear function with coefficients that are non-zero, the range is [tex]\( \mathbb{R} \)[/tex].
2. Multiplication [tex]\((fg)(x) = 6x^2 + 5x + 1\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: [tex]\( 6x^2 + 5x + 1 \)[/tex] is a quadratic function. As a quadratic function with a positive leading coefficient, its range is [tex]\( [1 - (\text{vertex value}), \infty) \)[/tex]. [tex]\( y \)[/tex] can attain any value greater than or equal to the minimum value of the quadratic function, which is global minimum.
3. Composition [tex]\( (f \circ g)(x) = 6x + 3\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 6x + 3 \)[/tex] is a linear function, the range is [tex]\( \mathbb{R} \)[/tex].
4. Composition [tex]\( (g \circ f)(x) = 6x + 4\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 6x + 4 \)[/tex] is a linear function, the range is [tex]\( \mathbb{R} \)[/tex].
Thus, every operation defined over real numbers has a domain of all real numbers, and ranges as noted above.
### (i) Functional Values and Operations
Functions Given:
- [tex]\( f(x) = 2x + 1 \)[/tex]
- [tex]\( g(x) = 3x + 1 \)[/tex]
Definitions for Operations:
- Addition of functions: [tex]\( (f + g)(x) = f(x) + g(x) \)[/tex]
- Multiplication of functions: [tex]\( (f \cdot g)(x) = f(x) \cdot g(x) \)[/tex]
- Composition of functions [tex]\( f \circ g \)[/tex] and [tex]\( g \circ f \)[/tex]:
- [tex]\( (f \circ g)(x) = f(g(x)) \)[/tex]
- [tex]\( (g \circ f)(x) = g(f(x)) \)[/tex]
#### 1. Addition: [tex]\(\bar{g}(x) = (f(x) + g(x))\)[/tex]
[tex]\[ \bar{g}(x) = f(x) + g(x) \][/tex]
[tex]\[ = (2x + 1) + (3x + 1) \][/tex]
[tex]\[ = 2x + 3x + 1 + 1 \][/tex]
[tex]\[ = 5x + 2 \][/tex]
So, [tex]\(\bar{g}(x) = 5x + 2\)[/tex].
#### 2. Multiplication: [tex]\((fg)(x) = (f(x) \cdot g(x))\)[/tex]
[tex]\[ (fg)(x) = (2x + 1) \cdot (3x + 1) \][/tex]
[tex]\[ = 2x \cdot 3x + 2x \cdot 1 + 1 \cdot 3x + 1 \cdot 1 \][/tex]
[tex]\[ = 6x^2 + 2x + 3x + 1 \][/tex]
[tex]\[ = 6x^2 + 5x + 1 \][/tex]
So, [tex]\((fg)(x) = 6x^2 + 5x + 1\)[/tex].
#### 3. Composition [tex]\( f \circ g \)[/tex] (i.e., [tex]\( f(g(x)) \)[/tex]):
[tex]\[ (f \circ g)(x) = f(g(x)) = f(3x + 1) \][/tex]
Substitute [tex]\( 3x + 1 \)[/tex] into [tex]\( f(x) = 2x + 1 \)[/tex]:
[tex]\[ = 2(3x + 1) + 1 \][/tex]
[tex]\[ = 6x + 2 + 1 \][/tex]
[tex]\[ = 6x + 3 \][/tex]
So, [tex]\( (f \circ g)(x) = 6x + 3 \)[/tex].
#### 4. Composition [tex]\( g \circ f \)[/tex] (i.e., [tex]\( g(f(x)) \)[/tex]):
[tex]\[ (g \circ f)(x) = g(f(x)) = g(2x + 1) \][/tex]
Substitute [tex]\( 2x + 1 \)[/tex] into [tex]\( g(x) = 3x + 1 \)[/tex]:
[tex]\[ = 3(2x + 1) + 1 \][/tex]
[tex]\[ = 6x + 3 + 1 \][/tex]
[tex]\[ = 6x + 4 \][/tex]
So, [tex]\( (g \circ f)(x) = 6x + 4 \)[/tex].
### (ii) Equality of [tex]\( fg \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex]
Let's compare the expressions we derived:
- [tex]\( (fg)(x) = 6x^2 + 5x + 1 \)[/tex]
- [tex]\( (f \circ g)(x) = 6x + 3 \)[/tex]
- [tex]\( (g \circ f)(x) = 6x + 4 \)[/tex]
Clearly,
[tex]\[ (fg)(x) \neq (f \circ g)(x) \][/tex]
[tex]\[ (f \circ g)(x) \neq (g \circ f)(x) \][/tex]
[tex]\[ (fg)(x) \neq (g \circ f)(x) \][/tex]
Therefore, [tex]\( fg \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex] are not equal.
### (iii) Domain and Range of Each Operation
Domain:
Since [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined from [tex]\( \mathbb{R} \rightarrow \mathbb{R} \)[/tex], meaning they are defined for all real [tex]\( x \)[/tex]:
- The domains of [tex]\( f \)[/tex], [tex]\( g \)[/tex], [tex]\( \bar{g} \)[/tex], [tex]\( (fg) \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex] are all [tex]\( \mathbb{R} \)[/tex].
Range:
1. Addition [tex]\(\bar{g}(x) = 5x + 2\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 5x + 2 \)[/tex] is a linear function with coefficients that are non-zero, the range is [tex]\( \mathbb{R} \)[/tex].
2. Multiplication [tex]\((fg)(x) = 6x^2 + 5x + 1\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: [tex]\( 6x^2 + 5x + 1 \)[/tex] is a quadratic function. As a quadratic function with a positive leading coefficient, its range is [tex]\( [1 - (\text{vertex value}), \infty) \)[/tex]. [tex]\( y \)[/tex] can attain any value greater than or equal to the minimum value of the quadratic function, which is global minimum.
3. Composition [tex]\( (f \circ g)(x) = 6x + 3\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 6x + 3 \)[/tex] is a linear function, the range is [tex]\( \mathbb{R} \)[/tex].
4. Composition [tex]\( (g \circ f)(x) = 6x + 4\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 6x + 4 \)[/tex] is a linear function, the range is [tex]\( \mathbb{R} \)[/tex].
Thus, every operation defined over real numbers has a domain of all real numbers, and ranges as noted above.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.