Find detailed and accurate answers to your questions on IDNLearn.com. Our experts provide timely and precise responses to help you understand and solve any issue you face.
Sagot :
Let's break down each part of the problem step by step.
### (i) Functional Values and Operations
Functions Given:
- [tex]\( f(x) = 2x + 1 \)[/tex]
- [tex]\( g(x) = 3x + 1 \)[/tex]
Definitions for Operations:
- Addition of functions: [tex]\( (f + g)(x) = f(x) + g(x) \)[/tex]
- Multiplication of functions: [tex]\( (f \cdot g)(x) = f(x) \cdot g(x) \)[/tex]
- Composition of functions [tex]\( f \circ g \)[/tex] and [tex]\( g \circ f \)[/tex]:
- [tex]\( (f \circ g)(x) = f(g(x)) \)[/tex]
- [tex]\( (g \circ f)(x) = g(f(x)) \)[/tex]
#### 1. Addition: [tex]\(\bar{g}(x) = (f(x) + g(x))\)[/tex]
[tex]\[ \bar{g}(x) = f(x) + g(x) \][/tex]
[tex]\[ = (2x + 1) + (3x + 1) \][/tex]
[tex]\[ = 2x + 3x + 1 + 1 \][/tex]
[tex]\[ = 5x + 2 \][/tex]
So, [tex]\(\bar{g}(x) = 5x + 2\)[/tex].
#### 2. Multiplication: [tex]\((fg)(x) = (f(x) \cdot g(x))\)[/tex]
[tex]\[ (fg)(x) = (2x + 1) \cdot (3x + 1) \][/tex]
[tex]\[ = 2x \cdot 3x + 2x \cdot 1 + 1 \cdot 3x + 1 \cdot 1 \][/tex]
[tex]\[ = 6x^2 + 2x + 3x + 1 \][/tex]
[tex]\[ = 6x^2 + 5x + 1 \][/tex]
So, [tex]\((fg)(x) = 6x^2 + 5x + 1\)[/tex].
#### 3. Composition [tex]\( f \circ g \)[/tex] (i.e., [tex]\( f(g(x)) \)[/tex]):
[tex]\[ (f \circ g)(x) = f(g(x)) = f(3x + 1) \][/tex]
Substitute [tex]\( 3x + 1 \)[/tex] into [tex]\( f(x) = 2x + 1 \)[/tex]:
[tex]\[ = 2(3x + 1) + 1 \][/tex]
[tex]\[ = 6x + 2 + 1 \][/tex]
[tex]\[ = 6x + 3 \][/tex]
So, [tex]\( (f \circ g)(x) = 6x + 3 \)[/tex].
#### 4. Composition [tex]\( g \circ f \)[/tex] (i.e., [tex]\( g(f(x)) \)[/tex]):
[tex]\[ (g \circ f)(x) = g(f(x)) = g(2x + 1) \][/tex]
Substitute [tex]\( 2x + 1 \)[/tex] into [tex]\( g(x) = 3x + 1 \)[/tex]:
[tex]\[ = 3(2x + 1) + 1 \][/tex]
[tex]\[ = 6x + 3 + 1 \][/tex]
[tex]\[ = 6x + 4 \][/tex]
So, [tex]\( (g \circ f)(x) = 6x + 4 \)[/tex].
### (ii) Equality of [tex]\( fg \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex]
Let's compare the expressions we derived:
- [tex]\( (fg)(x) = 6x^2 + 5x + 1 \)[/tex]
- [tex]\( (f \circ g)(x) = 6x + 3 \)[/tex]
- [tex]\( (g \circ f)(x) = 6x + 4 \)[/tex]
Clearly,
[tex]\[ (fg)(x) \neq (f \circ g)(x) \][/tex]
[tex]\[ (f \circ g)(x) \neq (g \circ f)(x) \][/tex]
[tex]\[ (fg)(x) \neq (g \circ f)(x) \][/tex]
Therefore, [tex]\( fg \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex] are not equal.
### (iii) Domain and Range of Each Operation
Domain:
Since [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined from [tex]\( \mathbb{R} \rightarrow \mathbb{R} \)[/tex], meaning they are defined for all real [tex]\( x \)[/tex]:
- The domains of [tex]\( f \)[/tex], [tex]\( g \)[/tex], [tex]\( \bar{g} \)[/tex], [tex]\( (fg) \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex] are all [tex]\( \mathbb{R} \)[/tex].
Range:
1. Addition [tex]\(\bar{g}(x) = 5x + 2\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 5x + 2 \)[/tex] is a linear function with coefficients that are non-zero, the range is [tex]\( \mathbb{R} \)[/tex].
2. Multiplication [tex]\((fg)(x) = 6x^2 + 5x + 1\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: [tex]\( 6x^2 + 5x + 1 \)[/tex] is a quadratic function. As a quadratic function with a positive leading coefficient, its range is [tex]\( [1 - (\text{vertex value}), \infty) \)[/tex]. [tex]\( y \)[/tex] can attain any value greater than or equal to the minimum value of the quadratic function, which is global minimum.
3. Composition [tex]\( (f \circ g)(x) = 6x + 3\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 6x + 3 \)[/tex] is a linear function, the range is [tex]\( \mathbb{R} \)[/tex].
4. Composition [tex]\( (g \circ f)(x) = 6x + 4\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 6x + 4 \)[/tex] is a linear function, the range is [tex]\( \mathbb{R} \)[/tex].
Thus, every operation defined over real numbers has a domain of all real numbers, and ranges as noted above.
### (i) Functional Values and Operations
Functions Given:
- [tex]\( f(x) = 2x + 1 \)[/tex]
- [tex]\( g(x) = 3x + 1 \)[/tex]
Definitions for Operations:
- Addition of functions: [tex]\( (f + g)(x) = f(x) + g(x) \)[/tex]
- Multiplication of functions: [tex]\( (f \cdot g)(x) = f(x) \cdot g(x) \)[/tex]
- Composition of functions [tex]\( f \circ g \)[/tex] and [tex]\( g \circ f \)[/tex]:
- [tex]\( (f \circ g)(x) = f(g(x)) \)[/tex]
- [tex]\( (g \circ f)(x) = g(f(x)) \)[/tex]
#### 1. Addition: [tex]\(\bar{g}(x) = (f(x) + g(x))\)[/tex]
[tex]\[ \bar{g}(x) = f(x) + g(x) \][/tex]
[tex]\[ = (2x + 1) + (3x + 1) \][/tex]
[tex]\[ = 2x + 3x + 1 + 1 \][/tex]
[tex]\[ = 5x + 2 \][/tex]
So, [tex]\(\bar{g}(x) = 5x + 2\)[/tex].
#### 2. Multiplication: [tex]\((fg)(x) = (f(x) \cdot g(x))\)[/tex]
[tex]\[ (fg)(x) = (2x + 1) \cdot (3x + 1) \][/tex]
[tex]\[ = 2x \cdot 3x + 2x \cdot 1 + 1 \cdot 3x + 1 \cdot 1 \][/tex]
[tex]\[ = 6x^2 + 2x + 3x + 1 \][/tex]
[tex]\[ = 6x^2 + 5x + 1 \][/tex]
So, [tex]\((fg)(x) = 6x^2 + 5x + 1\)[/tex].
#### 3. Composition [tex]\( f \circ g \)[/tex] (i.e., [tex]\( f(g(x)) \)[/tex]):
[tex]\[ (f \circ g)(x) = f(g(x)) = f(3x + 1) \][/tex]
Substitute [tex]\( 3x + 1 \)[/tex] into [tex]\( f(x) = 2x + 1 \)[/tex]:
[tex]\[ = 2(3x + 1) + 1 \][/tex]
[tex]\[ = 6x + 2 + 1 \][/tex]
[tex]\[ = 6x + 3 \][/tex]
So, [tex]\( (f \circ g)(x) = 6x + 3 \)[/tex].
#### 4. Composition [tex]\( g \circ f \)[/tex] (i.e., [tex]\( g(f(x)) \)[/tex]):
[tex]\[ (g \circ f)(x) = g(f(x)) = g(2x + 1) \][/tex]
Substitute [tex]\( 2x + 1 \)[/tex] into [tex]\( g(x) = 3x + 1 \)[/tex]:
[tex]\[ = 3(2x + 1) + 1 \][/tex]
[tex]\[ = 6x + 3 + 1 \][/tex]
[tex]\[ = 6x + 4 \][/tex]
So, [tex]\( (g \circ f)(x) = 6x + 4 \)[/tex].
### (ii) Equality of [tex]\( fg \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex]
Let's compare the expressions we derived:
- [tex]\( (fg)(x) = 6x^2 + 5x + 1 \)[/tex]
- [tex]\( (f \circ g)(x) = 6x + 3 \)[/tex]
- [tex]\( (g \circ f)(x) = 6x + 4 \)[/tex]
Clearly,
[tex]\[ (fg)(x) \neq (f \circ g)(x) \][/tex]
[tex]\[ (f \circ g)(x) \neq (g \circ f)(x) \][/tex]
[tex]\[ (fg)(x) \neq (g \circ f)(x) \][/tex]
Therefore, [tex]\( fg \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex] are not equal.
### (iii) Domain and Range of Each Operation
Domain:
Since [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined from [tex]\( \mathbb{R} \rightarrow \mathbb{R} \)[/tex], meaning they are defined for all real [tex]\( x \)[/tex]:
- The domains of [tex]\( f \)[/tex], [tex]\( g \)[/tex], [tex]\( \bar{g} \)[/tex], [tex]\( (fg) \)[/tex], [tex]\( f \circ g \)[/tex], and [tex]\( g \circ f \)[/tex] are all [tex]\( \mathbb{R} \)[/tex].
Range:
1. Addition [tex]\(\bar{g}(x) = 5x + 2\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 5x + 2 \)[/tex] is a linear function with coefficients that are non-zero, the range is [tex]\( \mathbb{R} \)[/tex].
2. Multiplication [tex]\((fg)(x) = 6x^2 + 5x + 1\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: [tex]\( 6x^2 + 5x + 1 \)[/tex] is a quadratic function. As a quadratic function with a positive leading coefficient, its range is [tex]\( [1 - (\text{vertex value}), \infty) \)[/tex]. [tex]\( y \)[/tex] can attain any value greater than or equal to the minimum value of the quadratic function, which is global minimum.
3. Composition [tex]\( (f \circ g)(x) = 6x + 3\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 6x + 3 \)[/tex] is a linear function, the range is [tex]\( \mathbb{R} \)[/tex].
4. Composition [tex]\( (g \circ f)(x) = 6x + 4\)[/tex]:
- Domain: [tex]\( \mathbb{R} \)[/tex]
- Range: Since [tex]\( 6x + 4 \)[/tex] is a linear function, the range is [tex]\( \mathbb{R} \)[/tex].
Thus, every operation defined over real numbers has a domain of all real numbers, and ranges as noted above.
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.