Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Our community provides timely and precise responses to help you understand and solve any issue you face.

A silver dollar is dropped from the top of a building that is 1387 feet tall. Use the position function below for free-falling objects.

[tex]\[ s(t) = -16t^2 + v_0 t + 1387 \][/tex]

(a) Determine the position and velocity functions for the coin.

[tex]\[
\begin{array}{l}
s(t) = -16t^2 + 1387 \\
v(t) = -32t
\end{array}
\][/tex]

(b) Determine the average velocity on the interval [tex]\([3,4]\)[/tex].

[tex]\[ -112 \text{ ft/s} \][/tex]

(c) Find the instantaneous velocities when [tex]\(t=3\)[/tex] seconds and [tex]\(t=4\)[/tex] seconds.

[tex]\[
\begin{array}{l}
v(3) = -96 \text{ ft/s} \\
v(4) = -128 \text{ ft/s}
\end{array}
\][/tex]

(d) Find the time required for the coin to reach ground level. (Round your answer to three decimal places.)

[tex]\[ t = 9.179 \text{ s} \][/tex]

(e) Find the velocity of the coin at impact. (Round your answer to three decimal places.)

[tex]\[ -293.7 \text{ ft/s} \][/tex]


Sagot :

Let's break down the problem step-by-step:

### (a) Determine the position and velocity functions for the coin:
Given the position function for free-falling objects:
[tex]\[ s(t) = -16t^2 + v_0 t + s_0 \][/tex]

For this problem:
- The initial velocity [tex]\( v_0 \)[/tex] is 0 since the coin is dropped.
- The initial position [tex]\( s_0 \)[/tex] is the height of the building, which is 1387 feet.

Thus, the position function simplifies to:
[tex]\[ s(t) = -16t^2 + 1387 \][/tex]

The velocity function [tex]\( v(t) \)[/tex] is the derivative of the position function [tex]\( s(t) \)[/tex]:
[tex]\[ v(t) = \frac{d}{dt}[-16t^2 + 1387] \][/tex]
[tex]\[ v(t) = -32t \][/tex]

### (b) Determine the average velocity on the interval [tex]\([3, 4]\)[/tex]:
The average velocity [tex]\( \overline{v} \)[/tex] on an interval [tex]\([t_1, t_2]\)[/tex] is computed as:
[tex]\[ \overline{v} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \][/tex]

Given [tex]\( t_1 = 3 \)[/tex] seconds and [tex]\( t_2 = 4 \)[/tex] seconds:
[tex]\[ s(3) = -16(3)^2 + 1387 \][/tex]
[tex]\[ s(3) = -144 + 1387 = 1243 \][/tex]

[tex]\[ s(4) = -16(4)^2 + 1387 \][/tex]
[tex]\[ s(4) = -256 + 1387 = 1131 \][/tex]

Thus, the average velocity is:
[tex]\[ \overline{v} = \frac{1131 - 1243}{4 - 3} = \frac{-112}{1} = -112 \, \text{ft/s} \][/tex]

### (c) Find the instantaneous velocities when [tex]\( t = 3 \)[/tex] seconds and [tex]\( t = 4 \)[/tex] seconds:

The instantaneous velocity at [tex]\( t = 3 \)[/tex] seconds:
[tex]\[ v(3) = -32(3) = -96 \, \text{ft/s} \][/tex]

The instantaneous velocity at [tex]\( t = 4 \)[/tex] seconds:
[tex]\[ v(4) = -32(4) = -128 \, \text{ft/s} \][/tex]

### (d) Find the time required for the coin to reach the ground level:
To find the time [tex]\( t \)[/tex] when the coin reaches the ground level (which corresponds to [tex]\( s(t) = 0 \)[/tex]):

Set the position function to 0 and solve for [tex]\( t \)[/tex]:
[tex]\[ 0 = -16t^2 + 1387 \][/tex]
[tex]\[ 16t^2 = 1387 \][/tex]
[tex]\[ t^2 = \frac{1387}{16} \][/tex]
[tex]\[ t = \sqrt{\frac{1387}{16}} \][/tex]
[tex]\[ t = \frac{\sqrt{1387}}{4} \][/tex]

[tex]\[ t \approx 9.179 \, \text{s} \][/tex] (Rounded to three decimal places)

### (e) Find the velocity of the coin at impact:
The velocity at impact is the instantaneous velocity at the time the coin reaches the ground level, [tex]\( t = \frac{\sqrt{1387}}{4} \)[/tex]:

[tex]\[ v\left( \frac{\sqrt{1387}}{4} \right) = -32 \left( \frac{\sqrt{1387}}{4} \right) \][/tex]
[tex]\[ v\left( \frac{\sqrt{1387}}{4} \right) = -8\sqrt{1387} \][/tex]

[tex]\[ v \approx -293.7 \, \text{ft/s} \][/tex] (Rounded to three decimal places)

Thus, the complete solution step-by-step is as follows:
- (a) Position function: [tex]\( s(t) = -16t^2 + 1387 \)[/tex], Velocity function: [tex]\( v(t) = -32t \)[/tex]
- (b) Average velocity on [tex]\([3, 4]\)[/tex]: [tex]\( -112 \, \text{ft/s} \)[/tex]
- (c) Instantaneous velocities: [tex]\( v(3) = -96 \, \text{ft/s} \)[/tex] and [tex]\( v(4) = -128 \, \text{ft/s} \)[/tex]
- (d) Time to reach the ground: [tex]\( t \approx 9.179 \, \text{s} \)[/tex]
- (e) Velocity at impact: [tex]\( -293.7 \, \text{ft/s} \)[/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.