Get the answers you need from a community of experts on IDNLearn.com. Explore thousands of verified answers from experts and find the solutions you need, no matter the topic.
Sagot :
Let's go through each part of the question step-by-step:
### Part (a)
Question: Which trigonometric ratio is represented by [tex]\( \frac{AB}{BC} \)[/tex] ?
Solution:
In a right-angled triangle, the tangent of an angle [tex]\(\theta\)[/tex] is defined as the ratio of the length of the opposite side to the length of the adjacent side. For the given triangle [tex]\(ABC\)[/tex], where [tex]\(\angle ACB = \theta\)[/tex] and [tex]\(\angle ABC = 90^\circ\)[/tex],
[tex]\[ \text{tan}(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{AB}{BC} \][/tex]
Therefore, the trigonometric ratio represented by [tex]\( \frac{AB}{BC} \)[/tex] is [tex]\(\tan(\theta)\)[/tex].
### Part (b)
Question: What is the value of [tex]\( \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 \)[/tex]?
Solution:
This equation is a trigonometric identity derived from the Pythagorean theorem applied to the sides of a right-angled triangle.
[tex]\[ \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = \sin^2(\theta) + \cos^2(\theta) \][/tex]
According to the Pythagorean identity in trigonometry:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Therefore, the value of the given expression is:
[tex]\[ 1 \][/tex]
### Part (c)
Question: If [tex]\( AC = 20 \)[/tex] cm and [tex]\( \cos \theta = \frac{4}{5} \)[/tex], find the length of [tex]\( BC \)[/tex].
Solution:
Given:
[tex]\[ AC = 20 \, \text{cm} \][/tex]
[tex]\[ \cos \theta = \frac{4}{5} \][/tex]
First, we find [tex]\( AB \)[/tex]:
[tex]\[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{AB}{AC} \implies AB = AC \cdot \cos \theta = 20 \cdot \frac{4}{5} = 16 \, \text{cm} \][/tex]
Next, we use the Pythagorean theorem to find [tex]\( BC \)[/tex]:
[tex]\[ AC^2 = AB^2 + BC^2 \implies BC^2 = AC^2 - AB^2 \][/tex]
[tex]\[ BC^2 = 20^2 - 16^2 = 400 - 256 = 144 \implies BC = \sqrt{144} = 12 \, \text{cm} \][/tex]
Therefore, the length of [tex]\( BC \)[/tex] is:
[tex]\[ 12 \, \text{cm} \][/tex]
### Part (d)
Question: If the length of [tex]\( AC \)[/tex] were twice the length of [tex]\( AB \)[/tex], what would be the value of [tex]\( \theta \)[/tex] ?
Solution:
Let [tex]\(AC = 2 \cdot AB\)[/tex].
Given:
[tex]\[ AC = 2 \cdot AB \][/tex]
We can write:
[tex]\[ AB = \frac{AC}{2} \][/tex]
Now, let’s calculate [tex]\( \cos \theta \)[/tex]:
[tex]\[ \cos \theta = \frac{AB}{AC} = \frac{\frac{AC}{2}}{AC} = \frac{1}{2} \][/tex]
To find [tex]\( \theta \)[/tex], we use the arccosine function:
[tex]\[ \theta = \cos^{-1}\left(\frac{1}{2}\right) \][/tex]
In radians:
[tex]\[ \theta = \frac{\pi}{3} \, \text{radians} = 1.0471975511965979 \, \text{radians}\][/tex]
### Part (a)
Question: Which trigonometric ratio is represented by [tex]\( \frac{AB}{BC} \)[/tex] ?
Solution:
In a right-angled triangle, the tangent of an angle [tex]\(\theta\)[/tex] is defined as the ratio of the length of the opposite side to the length of the adjacent side. For the given triangle [tex]\(ABC\)[/tex], where [tex]\(\angle ACB = \theta\)[/tex] and [tex]\(\angle ABC = 90^\circ\)[/tex],
[tex]\[ \text{tan}(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{AB}{BC} \][/tex]
Therefore, the trigonometric ratio represented by [tex]\( \frac{AB}{BC} \)[/tex] is [tex]\(\tan(\theta)\)[/tex].
### Part (b)
Question: What is the value of [tex]\( \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 \)[/tex]?
Solution:
This equation is a trigonometric identity derived from the Pythagorean theorem applied to the sides of a right-angled triangle.
[tex]\[ \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = \sin^2(\theta) + \cos^2(\theta) \][/tex]
According to the Pythagorean identity in trigonometry:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Therefore, the value of the given expression is:
[tex]\[ 1 \][/tex]
### Part (c)
Question: If [tex]\( AC = 20 \)[/tex] cm and [tex]\( \cos \theta = \frac{4}{5} \)[/tex], find the length of [tex]\( BC \)[/tex].
Solution:
Given:
[tex]\[ AC = 20 \, \text{cm} \][/tex]
[tex]\[ \cos \theta = \frac{4}{5} \][/tex]
First, we find [tex]\( AB \)[/tex]:
[tex]\[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{AB}{AC} \implies AB = AC \cdot \cos \theta = 20 \cdot \frac{4}{5} = 16 \, \text{cm} \][/tex]
Next, we use the Pythagorean theorem to find [tex]\( BC \)[/tex]:
[tex]\[ AC^2 = AB^2 + BC^2 \implies BC^2 = AC^2 - AB^2 \][/tex]
[tex]\[ BC^2 = 20^2 - 16^2 = 400 - 256 = 144 \implies BC = \sqrt{144} = 12 \, \text{cm} \][/tex]
Therefore, the length of [tex]\( BC \)[/tex] is:
[tex]\[ 12 \, \text{cm} \][/tex]
### Part (d)
Question: If the length of [tex]\( AC \)[/tex] were twice the length of [tex]\( AB \)[/tex], what would be the value of [tex]\( \theta \)[/tex] ?
Solution:
Let [tex]\(AC = 2 \cdot AB\)[/tex].
Given:
[tex]\[ AC = 2 \cdot AB \][/tex]
We can write:
[tex]\[ AB = \frac{AC}{2} \][/tex]
Now, let’s calculate [tex]\( \cos \theta \)[/tex]:
[tex]\[ \cos \theta = \frac{AB}{AC} = \frac{\frac{AC}{2}}{AC} = \frac{1}{2} \][/tex]
To find [tex]\( \theta \)[/tex], we use the arccosine function:
[tex]\[ \theta = \cos^{-1}\left(\frac{1}{2}\right) \][/tex]
In radians:
[tex]\[ \theta = \frac{\pi}{3} \, \text{radians} = 1.0471975511965979 \, \text{radians}\][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.